Part One

An operating system acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
evatem is to provide an environmertt i which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard-
ware The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Irermally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating system s large and complex, it must be created
piece by piece, Each of these pieces should be a well delineated portion
of the system, with carefully defined inputs, outputs, and functions.
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An operating system is a program that manages the computer hardware. 1t
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
ol operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer {PC) operating systems support complex
zames, business applications, and evervthing in between. Operating systems
for handheld computers are designed 1o provide an environment in which a
user can easily interface with the computer to execute programs. Thus, some
opuerating systems are designed to be conrveniont, others to be efficieni, and others
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, 1/0, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter we
provide a general overview-of the major components of an operating system.

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into
four components: the fuardivare, the operating system, the application progranes,
and the users (Figure 1.1).

The hardware—the central processing unit (CPU), the memory, and the
inputfoutput (O} devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers —define the ways in which these resources are
used to solve users’ computing problems. The operating svstem controls an-
coordinates the use of the hardware among the various application prograns
for the various users.
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Figure 1.1 Abstract view of the components of a computer systemn.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function by
itself. It simply provides an ervironment within which other programs can do
useful work.

- To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being
used. Most computer users sit in front of a PC, consisting of a monitor,
keyboard, mouse, and system unit. Such a system is designed for orie user
to monopolize its resources. The goal is to maximize the work (or play)
that the user is performing. In this case, the operating system is designed
mostly for ease of use, with some attention paid to performance and none
paid to resource utilization—how various hardware and software resources
are shared. Performance is, of course, important to the user; but rather than
resource utilization, such systems are optimized for the single-user experience.

In other cases, a user sits at a terminal connected to a mainframe or
minicomputer. Other users are accessing the same computer through other
terminals. These users share resources and may exchange information. The
operating system in such cases is designed to maximize resource utifization -
to assure that all available CPU time, memory, and 170 are used »ftctently and
that no individual user takes more than her fair share.

In still other cases, users sit at workstations connected to etworks of
vther workstations and servers. These users have dedicated e wirees at their
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disposal, but they also share resources such as networking and servers—file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems and networking. Because of power, speed, and interface limitations,
they perform relatively few remote operations. Their operating systems are
designed mostly for individual usability, but performance per amount of
battery life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads and
may turn indicator lights on or off to show status, but they and their operating
systems are designed primarily to run without user intervention.

1.1.2 System View

From the computer’s point of view, the operating system is the program
most intimately involved with the hardware. In this context, we can view
an operating system as a resource allgcator. A computer system has many
resources that may be required to solve a problem: CPU time, memory space,
file-storage space, 1/0 devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, tj\_errqufating__system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
faitly. As we have seen, resource allocation is especially important where many
users access the same mainframe or minicomputer.

A slightly different view of an operating system emphasizes the need to
control the various 1/Q. devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of 1/0 devices.

1.1.3 Defining Operating Systems

We have looked at the operating system’s role from the views of the user
and of the system. How, though, can we define what an operating system
is? In general, we have no completely adequate definition of an operating
system. Operating systems exist because they offer a reasonable way to solve
the problem of creating a usable computing system. The fundamental goal
of computer systems is to execute user programs and to make solving user
problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
developed. These programs require certain common operations, such as those
controlling the 1/0 devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

In addition, we have no universally accepted definition of what is part of the
operating system. A simple viewpoint is that it includes everything a vendor
ships when you order “the operating system.” The featurcs included, however,
vary greatly across systems. Some systems take up less than 1 megabyte of
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space and lack even a full-screen editor, whereas others require gigabytes of
space and are entirely based on graphical windowing systems. (A kilobyte, or
KB, is 1,024 bytes; a megabyte, or MB, is 1,024% bytes; and a gigabyte, or GB, is
1,024° bytes. Computer manufacturers often round off these numbers and say
that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes.) A more
common definition is that the operating system is the one program running
at all times on the computer (usually called the kernel), with all else being
systems programs and application programs. This last definition is the one
that we generally follow.

The matter of what constitutes an operating system has become increas-
ingly important. In 1998, the United States Department of Justice filed suit
against Microsoft, in essence claiming that Microsoft included too much func-
tionality in its operating systems and thus prevented appiication vendors from
competing. For example, a web browser was an integral part of the operating
system. As a result, Microsoft was found guilty of using its operating system
monopoly to limit competition.

Before we can explore the details of how computer systems operate, we need
a general knowledge of the structure of a computer system. In this section, we
look at several parts of this structure to round out our background knowledge.
The section is mostly concerned with computer-system organization, so vou
can skim or skip it if you already understand the concepts.

1.2.1 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs
and a number of device controllers connected through a common bus that
provides access to shared memory (Figure 1.2). Each device controller is in
charge of a specific type of device (for example, disk drives, audio devices, and
video displays). The CPU and the device controllers can execute concurrently,
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Figure 1.2 A modern computer system.
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competing for memory cycles. To ensure orderly access to the shared memory,
a memory controller is provided whose function is to synchronize access to the
memaory.

For a computer to start running—for instance, when it is powered
up or rebooted-—it needs to have an initial program to run. This initial
program, or bootstrap program, tends to be simple. Typically, it is stored
in read-only memory (ROM) or electrically erasable programmable read-only
memory (EEPROM), known by the general term firmware, within the computer
“hardware. It initializes all aspects of the system, from CPU registers to device
controllers to memory contents. The bootstrap program must know how to
load the operating system and to start executing that system. To accomplish this
goal, the bootstrap program must locate and load into memory the operating-
system kernel. The operating system then starts executing the first process,
such as “init,” and waits for some event to occur.

{The occurrence of an event is usually signaled by an interrupt from either
the“Rardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software
may trigger an interrupt by executing a special operation called a system call
(also called a monitor call).

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A time line of this operation is shown in Figure 1.3.

Interrupls are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.
The straightforward method for handling this transfer would be to invoke a
generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled.
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
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Figure 1.3 Interrupt time line for a single process doing output.
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memoery (the first 100 or so locations). These locations hold the addresses of
the interrupt service routines for the various devices. This array, or interrupt
vector, of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for
the interrupting device. Operating systems as different as Windows and UNIX
dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device number. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state—for instance, by modifying
register values—it must explicitly save the current state and then restore that
state before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation resumes
as though the interrupt had not occurred.

1.2.2 Storage Structure

Ll(]:]omputer programs must be in main memory (also called random-access

emory or RAM) to be executed. Main memory is the only large storage area
{millions to billions of bytes) that the processor can access directly. It commonly
is implemented in a semiconductor technology called dynamic random-access
memory (DRAM), which forms an array of memory words\EaCh word has its
own address. Interaction is achieved through a sequencelfof lead or store
instructions to specific memory addiesses. The load instruction moves a word
from main memory to an internal register within the CPU, whereas the store
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution.

A typical instruction—execution cycle, as executed on a system with a von
Neumann architecture, first fetches an instruction from memory and stores
that instruction in the instruction register. The instruction is then decoded
and may cause operands to be fetched from memory and stored in some
internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other
means) or what they are for (instructions or data). Accordingly, we can ignore
hgw a memory address is generated by a program. We are interested only in
tésequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory
permanently. This arrangement usually is not possible for the following two
reasons:

Main memory is usually too small to store all needed programs and data
permanently.

Main memory is a volatile storage device that loses its contents when -
power is turned off or otherwise lost.



Thus, most computer systems provide secondary storage as an extension
of main memory. The main requirement for secondary storage is that it be able
to hold large quantities of data permanently.

“The most common secondary-storage device is a magnetic disk, which \
provides storage for both programs and data. Most programs (web browsers, °
compilers, word processors, spreadsheets, and so on) are stored on a disk until
they are loaded into memory. Many programs then use the disk as both a source
and a destination of the information for their processing. Hence, the proper
management of disk storage is of central importance to a computer system, as
we discuss in Chapter 12.

In a larger sense, however, the storage structure that we have described —
consisting of registers, main memory, and magnetic disks-—is only one of many
possible storage systems. Others include cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum and of holding that datum until it is retrieved at a later time. The
main differences among the various storage systems lie in speed, cost, size,
and volatility.

The wide variety of storage systemsina computer system can be organized
in a hierarchy (Figure 1.4) according to speed and cost. The higher levels are
expensive, but they are fast. As we move down the hierarchy, the cost per bit
generally decreases, whereas the access time generally increases. This trade-off
is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no
reason to use the slower, more expensive memory. In fact, many early storage
devices, including paper tape and core memories, are relegated to museums
now that magnetic tape and semiconductor memory have become faster and
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Figure 1.4 Storage-device hierarchy.
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cheaper. The top four levels of memory in Figure 1.4 may be constructed using
semiconductor memory.

In addition to differing in speed and cost, the various storage systems
are either volatile or nonvolatile. As mentioned earlier, volatile storage loses
its contents when the power to the device is removed. In the absence of
expensive battery and generator backup systems, data must be written to
nonvolatile storage for safekeeping. In the hierarchy shown in Figure 1.4, the
storage systems above the electronic disk are volatile, whereas those below
are nonvolatile. An electronic disk can be designed to be either volatile or
nonvolatile. During normal operation, the electronic disk stores data in a
fatge DRAM array, which is volatile. But many electronic-disk devices contain
a hidden magnetic hard disk and a battery for backup power. If external
power is interrupted, the electronic-disk controller copies the data from RAM
to the magnetic disk. When external power is restored, the controller copies
the data back into the RAM. Another form of electronic disk is flash memory,
which is popular in cameras and personal digital assistants (PDAs), in robots,
and increasingly as removable storage on general-purpose computers. Flash
memory is slower than DRAM but needs no power to retain its contents, Another
form of nonvolatile storage is NVRAM, which is DRAM with battery backup
power. This memory can be as fast as DRAM but has a' limited duration in
which it is nonvolatile.

The design of a complete memory system must balance all the factors just
discussed: It must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile memory as possible. Caches can
be installed to improve performance where a large access-time or transfer-rate
disparity exists between two components.

1.2.3 /O Structure

Storage is only one of many types of 1/0 devices within a computer. A large
portion of operating system code is dedicated to managing 1/0, both because
of its importance to the reliability and performance of a system and because of
the varying nature of the devices. Therefore, we now provide an overview of
1/0.

A general-purpose computer system consists of CPUs and multiple device
controllers that are connected through a common bus. Each device controtler
s in charge of a specific type of device. Depending on the controller, there may
be more than one attached device. For instance, seven or more devices can be
attached to the small computer-systems interface (SCSI) controller. A device
controller maintains some local buffer storage and a set of special-purpose
registers. The device controller is responsible for moving the data between
the peripheral devices that it controls and its local buffer storage. Typically,
operating systems have a device driver for each device controller. This device
driver understands the device controller and presents a uniform interface to
the device to the rest of the operating system.

To start an I/0 operation, the device driver loads the appropriate registers
within the device controller. The device controller, in turn, examines the
contents of these registers to determine what action to take {such as “read
a character frem the keyboard™). The controiler starts the transfer of data from
the device to its local buffer. Once the transfer of data is complete, the device
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Figure 1.5 How a modern computer system works.

controller informs the device driver via an interrupt that it has finished if-
operation. The device driver then returns control to the operating system,
possibly returning the data or a pointer to the data if the operation was a read.
For other operations, the device driver returns status information.

This form of interrupt-driven 1/0 is fine for moving small amounts of data
but can produce high overhead when used for bulk data movement such as disk
1/0. To solve this problem, direct memory access (DMA) is used. After setting
up buffers, pointers, and counters for the 1/0 device, the device controller
transfers an entire block of data directly to or from its own buffer storage to
memory, with no intervention by the CPU. Only one interrupt is generated per
block, to tell the device driver that the operation has completed, rather than
the one interrupt per byte generated for low-speed devices. While the device
controller is performing these operations, the CPU is available to accomplish
other work.

Some high-end systems use switch rather than bus architecture. On these
systems, multiple components can talk to other components concurrently,
rather than competing for cycles on a shared bus. In this case, DMA is even
more effective. Figure 1.5 shows the interplay of all components of a computer
system.

N MRS FLES TR RE &

In Section 1.2 we introduced the general structure of a typical computer system.
A computer system may be organized in a number of different ways, which we
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can categorize roughly according to the number of general-purpose processors
used.

1.3.1 Single-Processor Systems

Most systems use a single processor. The variety of single-processor systems
may be surprising, however, since these systems range from PDAs through
mainframes. On a single-processor system, there is one main CPU capable
of executing a general-purpose instruction set, including instructions from
user processes. Almost all systems have other special-purpose processors as
well. They may come in the form of device-specific processors, such as disk,
keyboard, and graphics controllers; or, on mainframes, they may come in the
form of more general-purpose processors, such as 1/0 processors that move
data rapidly among the components of the system.

All of these special-purpose processors run a limited instruction set and
do not run user processes. Sometimes they are managed by the operating
system, in that the operating system sends them information about their next
task and monitors their status. For example, a disk-controller microprocessor
receives a sequence of requests from the main CPU and implements its own disk
queue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the-keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems
or circumstances, special-purpose processors are low-level components built
into the hardware. The operating system cannot communicate with these
processors; they do their jobs autonomously. The use of special-purpose
microprocessors is common and does not turn a single-processor system into
a multiprocessor. If there is only one general-purpose CPU, then the system is
a single-processor system.,

1.3.2 WMultiprocessor Systems

Although single-processor systems are most common, multiprocessor systems
{also known as parallel systems or tightly coupled systems) are growing
in importance. Such systems have two or more processors in close commu-
nication, sharing the computer bus and sometimes the clock, memory, and
peripheral devices.

Multiprocessor systems have three main advantages:

Increased throughput. By increasing the number of processors, we expect
to get more work done in less time. The speed-up ratio with N processors
is not N, however; rather, it is less than N. When multiple processors
cooperate on a task, a certain amount of overhead is incurred in keeping
all the parts working correctly. This overhead, plus contention for shared
resources, lowers the expected gain from additional processars. Similarly,
N programmers working closely together do not produce N times the
amount of work a single programmer would produce.

Economy of scale. Multiprocessor systems can cost less than equivalent
multiple single-processor systems, because they can share peripherals,
mass storage, and power supplies. If several programs operate on the
same set of data, it is cheaper to store those data on one disk and to have
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all the processors share them than to have many computers with local
disks and many copies of the data.

Increased reliability. If functions can be distributed properly among
several processors, then the failure of one processor will not halt the
system, only slow it down. [f we have ten processors and one fails, then
each of the remaining nine processors can pick up a share of the work of
the failed processor, Thus, the entire system runs only 10 percent slower,
rather than failing altogether.

Increased reliability of a computer system is crucial in many applications.
The ability to continue providing service proportional to the level of surviving
hardware is called graceful degradation. Some systems go beyond graceful
degradation and are called fault telerant, because they can suffer a failure of
any single component and still continue operation. Note that fault tolerance
requires a mechanism to allow the failure to be detected, diagnosed, and, if
possible, corrected. The HP NonStop system (formerly Tandem) system uses
both hardware and software duplication to ensure continued operation despite
faults. The systemn consists of multiple pairs of CPUs, working in lockstep. Both
processors in the pair execute each instruction and comypare the results. If the
results differ, then one CPU of the pair is at fault, and both are halted. The
process that was being executed is then moved to another pair of CPUs, and the
instruction that failed is restarted. This solution is expensive, since it involves
special hardware and considerable hardware duplication.

The multiple-processor systems in use today are of two types. Some
systems use asymmetric multiprocessing, in which each processor is assigned
a specific task. A master processor controls the system; the other processors
either look to the master for instruction or have predefined tasks. This scheme
defines a master—slave relationship. The master processor schedules and
allocates work to the slave processors.

The most common systems use symmetric muitiprocessing (SMP), in
which each processor performs all tasks within the operating system. SMP
means that all processors are peers; no master—slave relationship exists
between processors. Figure 1.6 illustrates a typical SMP architecture. An
example of the SMP system is Solaris, a commercial version of UNIX designed
by Sun Microsystems. A Solaris system can be configured to employ dozens of
processors, all running Solaris. The benefit of this model is that many processes
can run simultaneously—N processes can run if there-are N CPUs—without
causing a significant deterioration of performance. However, we must carefully
control 170 to ensure that the data reach the appropriate processor. Also, since
the CPUs are separate, one may be sitting idle while another is overloaded,

[ocRU

Figure 1.6 Symmetric multiprocessing architecture.
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resulting in inefficiencies. These inefficiencies can be avoided if the processors
share certain data structures. A multiprocessor system of this form will allow
processes and resources—such as memory -—to be shared dynamically among
the various processors and can Jower the variance among the processors. Such
a system must be written carefully, as we shall see in Chapter 6. Virtually all
modern operating systems—including Windows, Windows XP, Mac 05 X, and
Linux——now provide support for SMP.

T'he difference between svmmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. Forinstance, Sun’s operating Liystem S5un(s Version 4 provided
asymmetric muitiprocessing, whereas Version 5 (Solaris) is svmmetric an the
same hardware.

A recent trend in CPU design is to include multiple compute cores on
a single chip. In essence, these are multipruceqsor chips. Two-way chips are
becoming mainstream, while N-way chips are going to be common in high-end
svstems. Aside from architectural considerations such as cache, memaory, and
bus contention, these multi-core CPUs look to the operating system just as N
standard processors.

Lastly, blade servers are a recent development in which multiple processar
boards, 170 boards, and networking boards are placed in the same chassis.
The difference between these and traditional muitiprocessor systems is that
each blade-processor board boots independently and runs its own operating
svstem. Some blade-server boards are multiprocessor as well, which blurs the
lines between types of computers. In essence, those servers consist of multiple
independent multiprocessor systems.

1.3.3 Clustered Systems

Another tvpe of multiple-CPU system is the clustered system. Like multipro-
cessor systems, clustered systems gather together multiple CPUs to accomplish
computatienal work. Clustered systermns differ from multiprocessor systems,
however, in that they are composed of two or more individual systems
coupled together. The definition of the term clustered is not concrete; many
commercial packages wrestle with what a clustered system is and why one
form is better than another. The generally accepted definition i3 that clustered
computers share storage and are closely linked via a local-area network (LAN)
{as described in Section 1.10) or a faster interconnect such as InfiniBand.

Clustering is usually used to provide high-availability service; thel is,
service will continue even if one or more systems in the cluster fail. High
availability is generally obtained by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Fach node can
monitor one or more of the others (over the LAN). If the monitorad machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.

Clustering can be structured asymmetrically or symmetrically. In asym-
metric clustering, one machine is in hot-standby mode while the other is
running the applications. The hot-standby host machine does nothing but
momnitor the active server. If that server fails, the hot-standby host becomes the
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active server, In symmetric mode, bwo or more hosts are running applications,
and are monitoring each other. This mode is obviously more efficient, as it uses
all of the available hardware. It does require that more than one application be
available to run.

Cther forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) {as described in Section 1.10). Parallel clusters allow
multiple hosts to access the same data on the shared storage. Because most
operating systems lack suppaort for simultaneous data access by multiple hosts,
paralelclusters are usually accomplished by use of special versions of software
and special releases of applications. For example, Oracle Paratlei Server is a
version of Oracle’s database that has been designed to run on a parallel cluster.
Each machine runs Oracle, and a laver of sottware tracks access to the shared
disk. Each machine has full access to all data in the database. To provide this
shared access to data, the system must also supply access control and locking
to ensure that no conflicting operations occur. This function, commonly known
as a distributed lock manager (DLM), is included in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as weil as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANs), as described in Section 12.3.3, which allow many systems
to attach to a pool of storage. It the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then anv other host carn take
over. In a database cluster, dozens of hosts can share the same database, greatly
incregsing pertormance and reliability.

Now that we have discussed basic information about computer-system orga-
nization and architecture, we are ready to talk about operating systems.
An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. There are, however, many
comnonalities, which we consider in this section.

ém of the most important aspects of operating systems is the ability to
multiprrogram. A single user cannot, in general, keep either the CPU or the
i/0 devices busy at ail times. Multiprogramming increases CPU utilization by
organizing jobs (code and data) so that the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in mefory
simultaneously (Figure 1.7). This set of jobs can be a subset of the jobs kept in
the job pool —which contains all jobs that enter the system —since the number
of jobs that can be kept simultancously in memory is usually smalier than
the number of jobs that can be kept in the job pool. The operating system
picks and begins to execute one of the jobs in memory. Eventually, the job
may have to wait for some task, such as an 1/0 operation, to complete. n a
non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed
system, the operating systern simply switches te, and executes, another job.
When that job needs to wait, the CPU is switched to another job, and so on.
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Figure 1.7 Memory layout for a multiprogramming system.

Eventually, the first job finishes waiting and gets the CPU back. As long as at
least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various
systemn resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system(lime sharing (or multitasking) is a logical extension of
multiprogramming.\In time-sharing systems, the CPU executes multiple jobs
by switching among them, but the switches occur so frequently that the users
can interact with each program while it is running.

Time sharing requires an interactive (or hands-on) computer system,
whith provides direct communication between the user and the system. [The
user gives instructions to the operating system or to a program directly, usitig a
input device such as a keyboard or a mouse, and waits for immediate resuits on
an output device. Aggordingly, the response time should be short—typically
less than one second.

A time-shared gperating system allows many users to share the computer
simuitaneously. Since each action or command in a time-shared system tends
to be short, only a little CPU time is needed for each user. As the system switches
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at ieast one separate program in memory. A program loaded into
memory and executing is called a process. When a process executes, it typically
executes for only a short time before it either finishes or needs to perform 1/0.
1/0 may be interactive; that is, output goes to a display for the user, and input
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comes from a user keyboard, mouse, or other device. Since interactive 1/0
typically runs at “people speeds,” it may take a long time to complete. Input,
for example, may be bounded by the user’s typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rathér than let
the CPU sit idle as this interactive input takes place, the operating system will
rapidly switch the CPU to the program of some other user.

Time- sharmg and multi rogrammmg require several ]obs to be kept
simultaneously in memory/ Since in general main memory is too small to
accornmodate all jobs, the jsbs are kept initially on the disk in the job poﬂ)
This pool consists of all processes residing on disk awaiting allocation of maz
memory. If several jobs are ready to be brought inta memory, and if there is
not enough room for all of them, then the system must choose among them.
Making this decision is job scheduling, Which is discussed in Chapter 5. When
the operating system selects a job frop¥ the job pool, it loads that job into
memary for” éxecution. Having several programs in memory at the same time
requires some form of memory management, which is covered in Chapters 8
and 9. In addition{if several jobs are ready to run at the same time, the system
must choose amonig them. Making this decision is CPU schedulingg, which is
discussed in Chapter 5. Finally, running multiple jobs concurrently requires
that their ability to affect one another be bimited in all phases of the operating
system, including process scheduling, disk storage, and memory management.
These considerations are discussed throughout the text.

In a time-sharing system, the operating system must ensure reasonable
respanse time, which is sometimes accomplished through swapping, where
processes are swapped in and out of main memory to the disk. A more common
method for achieving this goal is virtual memory, a technique that allows
the execution of a process that is not completely in memory {Chapter 9).
The main advantage of the virtual-memory scheme is that it enables users
to run programs that are larger than actual physical memory. Further, it
abstracts main memory into a large, uniform array of storage, separating logical
memory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide a file system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 12). Also, time-sharing systems provide a mechanism for
protecting resources from inappropriate use (Chapter 17). To ensure orderly
execution, the system must provide mechanisms for job synchronization and
communication (Chapter 6), and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another {Chapter 7).

RIS RN B

As mentioned earlier, modern operating systems are interrupt driven. If there
are no processes to execute, no 1/0 devices to service, and no users to whom
to respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always s1gna1ed by the occurrence of an interrupt
or a trap. A trap (or an exception) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory access)
or by a specific request from a user program that an operating-system service
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be performed. The interrupt-driven nature of an operating systern defines
that system’s general structure. For each type of interrupt, separate segments
of code in the operating sysiem determine what action should be taken. An
interrupt service routine is provided that is responsible for dealing with the
interrupt.

Since the operating svstem and the users share the hardware and software
resources ot the computer system, we need to make sure that an error in a user
program could cause problems only for the one program that was running,
With sharing, many processes could be adver sely affected by a bug in one
program. For example, if a process gets stuck in an infinite 1()0p, this toop could
prevent the correct operation of many other processes. More subtle errors can
accur in a multiprogramming system, where one erroneous program might
modity another program, the data of another program, or even the operating
svstem itselt.

Without protection against these sorts of errors, either the computer must
exccute only one process at a ime or all output must be suspect. A properly
designed operating system must ensure that an incorrect (or malicious)
program cannot cause other programs to execute incorrectly.,

1.5.1 Dual-Mode Operation

v order to ensure the proper execut:on of the operating svstem, we must be
able to distinguish between the exccution of vperating-system code and user-
detined code. The approach taken by most computer systems is to provide
hardware support that allows us to differentiate among various modes of
execution.

At the very deast, we need bwo sepatate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or priviieged
mode). A bit, called the mode bit, is added to the hardware of the computer e
indicate the current mode: kernel () or user (1), With the mode bit, we are abie
to distinguish between a task that is executed onbehalf of the operating svstem
and one tlmt e executed on behalf of the user. When the computer system is
executg on behali of a user application, the system is in user mode. However,
when a usct dppll\_dtIOH requests a serv ice trom the opemtlm, system {via a
svstemn call), it must transition from user to kernel mode to fulfill the request.
This is shown in [ gure 1.8, As we shall see, this architectural enhancement is
usectul for many other aspects of svstem vperation as well.

user procpss
user mode
(mode tit = 1)

|

!

| M i o

| LUSET DrOCess vxnuumc. calls system ¢
| . -

T

l return from system call -’

R P

L. AU JN—
" p— 1 7
: wernel trap return

emne maode bit =0 mode bit = 1

kerngi mode
{mode tLit -

| execute system caII
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At sy stem boot time, the hardware starts in kernel mode. The operating,
system is s then loaded and starts user applications in user maode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit te 0). Thus, whencever the aperating,
system gains control of the computer, it is in kernel mode. The system alwavs
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and crrant users from one another. We
accomplish this protection by designating some of the machine instructions that
may cause harm as perlleged instructions. The hardware allows privileged
instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to user mode is an example of a pnuluvc d
instruction. Some other examples include 170 control. imer management, and
interrupt management. As we shall see throughout the text, there are masm
additional privileged instructions,

We can now see the life cvcle of instruction execuation m s comptiter svsivn
Initial control is within the operating system, where mstotciions are exevihes
in kernel mode. When control is given 1o a user application. the mode i<set L
user mode. Eventually, control is switched back to the operating svstem s e an
interrupt, a trap, or a svstem call.

system calls provide the means tor a user program te ask the operating
system o perform tasks reserved for the operating systenn on the wser
program’s behalf. A system call is invoked in a variety of wave, depending
on the functionality !JTO\]dt‘d by the underlving provessor 1y ol forms, =0
method used by a process to request action by The ope Fatiing sy steim, -
call usually takes the toTny on g trap tod specks i o L e e
[histrap can beexecuied by a generic wrupmstrocion. aitieu g
(such as the VIS R2UOU tamidvt bav e g spoecihis svaca Ll st o

When a system call is exeouted, 1ts reated by the harasare as aosoibe e

interrupt. Control passes throush the Fnferrupt Veclor b o seryboe Lo e
he operating svstem, and the mode Dit is wel dowernet onode, The
call service routine is a part ot the operabing syvetem. The ke exann
the interrupting instruction to deternune whal svstem cali nas ooy
parameter indicates what tyvpe of service the user program i T
Additional information necded for the request inay be passed in resisters
on the stack, or in memory (with pointers to the memory locations passed 1
registers). The kernel verifies that the parameters are correctand legal, eae.utes
the request, and returns control to the instruction following the syvstemall i
describe system calls more fully in Section 2.0

The lack of a hardware- L-Llppmtcd dual mode can cause seriots shortcom
ings in an operating system. For instance, Ms-D0~ was wrillen for the inte
8088 architecture, which has no mode bit and therefore no duat moace. A use
Program running awry can wipe out the operating system by owniting oner it
with data; and multiple programs are able towrite to a devive at the same e,
with possibiv disastrous results. Recent versions of H !h LN LTI R
fcl‘thum do mrovide doai-moce overatioe, 0 e

LR TR D E

ey
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Linux and Solaris for x86 systems, take advantage of this feature and provide
greater protection for the operating system.

Once hardware protection is in place, errors violating modes are detected
by the hardware. These errors are normally handled by the operating system.
If a user program fails in some way—such as by making an attempt either
to execute an illegal instruction or to access memory that is not in the user’s
address space-—then the hardware will trap to the operating system. The trap
transfers control through the interrupt vector to the operating system, just as
an interrupt does. When a program error occurs, the operating system must
terminate the program abnormally. This situation is handled by the same code
as is a user-requested abnormal termination. An appropriate error message is
given, and the memory of the program may be dumped. The memory dump
is usually written to a file so that the user or programmer can examine it and
perhaps correct it and restart the program.

1.5.2 Timer

We must ensure that the operating system maintains control vver the CPU.
We must prevent a user program from getting stuck in an infinite loop or not
calling system services and never returning control to the operating system.
To accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A
variable timer is gencrally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a fatal
error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simple technique is to initialize a counter with the amount of time that a
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter ts decremented by 1. As long as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time
limit. het

' A program does nothing unless its instructions are executed by a (“PU\:‘
ogram in execution, as mentioned, is a process. A time-shared user progra
such as a compiler is a process. A word-processing program being run by-an
individual user on a PC is a process. A system task, such as sending output
to a printer, caralso be a process {or at least part of one). For now, you can
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consider a process to be a job or a time-shared program, but later you will learn
that the concept is more general. As we shall see in Chapter 3, it is possible
to provide system calls that allow processes to create subprocesses to execute
congurrently.

{ A process needs certain resources=—including CPU time, memory, files,
and 176 devices—to accomplish its task} These resources are either given to
the process when it is created or allocated to it while it is runniny. In addition
to the various physical and logical resources that a process obtams when it is
created, various initialization data (input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of a terminal. The process will be given as an input the name of the file and will
execute the appropriate instructions and system calls to obtain and display
on the terminal the desired information. When the process terminates, the
operating system will reclaim any reusable resources.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as the contents of a file stored on disk, whereas a process is an active
entity. éiﬂgle«threaded process has one program counter specifying the next
instruction to execute. (Threads wil] be covered in Chapter 4.} The execution
of such a process must be sequential. The CPU executes one instruction of the
process after another, until the procesd completes. Further, at any time, one
instruction at most is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has

. multiple program counters, each pointing to the next instruction to execute for

"™ A process is the unit of work in a system.|Such a system consists of a

tion of processes, some of which are operating-system processes (those

that execute system code) and the rest of which are user processes (those that

execute user code)."All these processes can potentially execute concurrently —
bygltip]exing th¢ CPU among them on a single CPU, for example.

a given thread. D

The operating system is responsible for the following activities in connec-

tionwith process management:

Creating and deleting both user and system processes
Suspending and resuming processes

Providing mechanisms for process synchronization
Providing mechanisms for process communication

Providing mechanisms for deadlock handling

We discuss process-management techniques in Chapters 3 through 6.

As we discussed in Section 1.2.2, the main memory is central to the operation
of a modern computer system. Main memory is a large array of words or bytes,
ranging in size from hundreds of thousands to billions. Each word or byte has
its own address. Main memory is a repository of quickly accessible data shared
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by the CPU and 170 devices. The central processor reads instructions from main
memory during the instruction-fetch cycle and both reads and writes data from
main memory during the data-fetch cvcle (on a Von Neumann architecture).
The main memory is generally the only large storage device that the CPU is able
to address and access directly. For example, for the CPU to process data from
disk, those data rust first be transferred to main memory by CPU-generated
170 calls. In the same way, instructions must be in memory for the CPU to
execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be Joaded and executed.

Toimprove both the utilization of the CP’U and the speed of the computer’s
response o its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different MY -
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-manageiient scheme for a specific system, we must take into account
ANy lstorH—respeuall\ on the l1:1u!u'ar"dest3_,n of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in connec-
tion with memory management:

Keeping track of which parts of memory are currently being used and Iy,
whom

Dreciding which processes for parts thereof) and data to mov e into and aut
chamemony

Atlocating and deallocating memory spoace as needed

Memory-management techniques will be discussed in Chapters § and u.

lo make the computer system conventent for users, the operating svstem
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the file. The operating system maps files onto phvsical media and
aceesses these tiles via the storage devices.

1.8.1 File-8Systermn Management

File management is one of the most visible components of an operating svsted

Computers can store information on several different tvpes of phy s:ml me d.a
Magnetic disk, optical disk, and magnetic tape are the most common. & ach
of ese medis has s own characteristics and physical organization 1o
medium s contrelicd ovoa device. such as o disk drive or tape drive,
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also has its own unique characteristics. These propertics include access speed,
capacity, data-transfer rate, and access method (sequential or random).

A file is a collection of related information defined by its creator. Commonly,
files represent programs (hoth source and object forms) and data. Data files may
be numeric, alphabetic, alphanumeric, or binary. Files may be free-form (for
example, text fites), or they may be formatted rigidly {for example, fixed tields).
Clearly, the concept of a file is an extremely general one.

The operating system implements the abstract concept of a file by managing
mass storage media, such as tapes and disks, and the devices that control them.
Also, files are normally organized into directories to make them easier to use.
Finatly, when multlplc users have access to tites, it may be desirable to control
by w hom and in what w ays (for example, read, write, append) files may be
accessed.

(he operating system is responsible for the following activities in connee-
tion with file management:

Creating and deieting hle
Creating and deleting directories to organize files
sapporting primitives tor manipulating files and directories

Mapping files onto secondary storage

Backing up ftiles on stable (nonvolatile) storage media

File-management techniques will be discussed in Chapters 10and 11

1.8.2 Mass-Storage Management

Anove have already =een, Bocau=e imain mom s s Lo gl toe accommeodats
all data and progroms, and Because the daia et o aolds are losb when powver
s Tost e compule: =ysiem muost provide secondary storageTe back up main
memors. Moskb niodeny computer systems ase disks a- the prin‘.:_‘ip&l oa-hne
storage medivm for both programs and data. Most programs—including
compilers, assemblers, word processors, editors, and formatters—are stored
ona disk antit Teaded into memory and then use the disk as both the source
and destination of their processing. ence, the proper management of disk
storage is of contral importance to @ computer system. The operating system s
responsible for the following activities in connection with disk management:

Free-space management
Storage allecation
Disk scheduling

Because secondary storage is used frequentls, it must be used etticiently. The
enlire speed of operation of a computer may hinge on the speeds ot the disk
subsvstem and of the algorithms that mampulate that subsystem.

There are, however, many uses for storage that s slower and lowoer in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
date, ~obdoreaet data and Tone-torns archin ol sborme o Gre somee et

BAAwTIe s faT e iTrves APt HI0TT A et U0 an D G s O s
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typical tertiary storage devices. The media (tapes and optical platters) vary
between WORM (write-once, read-many-times) and RW (read—write) formats.

Tertiary storage is not crucial to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary and tertiary storage management will be dis-
cussed in Chapter 12.

1.8.3 Caching

Caching is an important principle of computer systems. Information is
normally kept in some storage system (such as main memory). As it is used,
it is copied into a faster storage system—the cache—on a temporary basis.
When we need a particular piece of information, we first check whether it is

- in the cache. If it is, we use the information directly from the cache; if it is not,

we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorlthms to
decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware. For
instance, most systems have an instruction cache to hold the next instructions
expected to be executed. Without this cache, the CPU would have to wait
several cycles while aninstruction was fetched from main memory. For similar
reasons, most systems have one or more high-speed data caches in the memory
hierarchy. We are not concerned with these hardware-only caches in this text,
since they are outside the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement
policy can result in greatly increased performance. See Figure 1.9 for a storage

Levet L EEEE S e 1a

Name ragisters cache main memory disk storage
Typical size <1 KB > 16 MB, > 16 GB = 100 G8
Implementation custem memory with | on-chip or off-chip; CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-05 0.5-25 80 - 250 5,000.000

Bandwidth {MB/sec) | 20.000 — 100,000 5000 - 10,000 1000 - 5000 20 - 150

Managed by compiler hardware operating system | operating system

Backed by cache~ main memory disk CD or tape

Figure 1.9 Performance of various levels of storage.
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performance comparison in large workstations and small servers that shows
the need for caching. Various replacement algorithms for software-controlled
caches are discussed in Chapter 9.

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest
level, the operating system may maintain a cache of file-system data in main
memory. Also, electronic RAM disks (also known as solid-state disks) may be
used for high-speed storage that is accessed through the file-system interface.
The bulk of secondary storage is on magnetic disks. The magnetic-disk storage,
in turm, is often backed up onto magnetic tapes or removable disks to protect
against data loss in case of a hard-disk failure. Some systems automatically
archive old file data from secondary storage to tertiary storage, such as tape
jukeboxes, to lower the storage cost (see Chapter 12).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the
controlling operating-system software. For instance, data transfer from cache
to CPU and registers is usually a hardware function, with no operating-system
intervention. In contrast, transfer of data from disk to memory is usually
controlled by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is to
be incremented by 1 is located in file B, and file B resides on magnetic disk.
The increment operation proceeds by first issuing an 1/0 operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an intemal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and inan
internal register (see Figure 1.10). Once the increment takes place in the internal
register, the value of A differs in the various storage systems.The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various
processes, extreme care must be taken to ensure that, if several processes wish
to access A, then each of these processes will obtain the most recently updated
value of A.

The situation becomes more complicated in a multiprocessor environment
where, in addition to maintaining internal registers, each of the CPUs also

; 5 hardware
2 cache 3‘ register

Figure 1.10 Migration of integer A from disk to register.

magnetic
disk
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contains a local cache. Jn such an environment, a copy of A may exist
simultancously in several caches. Since the various CPUs can all execute
concurrently, we must make sure that an update to the value of A in one cache
is immediately reflected in all other caches where A resjdes. This situation is
called cache coherency, and it is usually a hardware problem (handled below
the operating-system level).

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept
on different computers that are distributed ispace. Since the various replicas
may be accessed and updated concurrently, some distributed systems ensure:
that, when a replica is updated in one place, all other replicas are brought up
to date as soon as possibie. There are various ways to achieve this guarantee,
as we discuss in Chapter 15.

1.8.4 /O Systems

One of the purposes of an operating system is to hide the peculiarities of specific
hardware devices from the user. For example, in UNIX, the peculiarities of 1/0
devices are hidden from the bulk of the operating system itself by the O
subsystem. The 1/0 subsystem consists of several components:

A memory-management component that includes buffering, cachins, and
spooling

A general device-driver interface

Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
itis assigned.

We discussed in Section 1.2.3 how interrupt handlers and device drivers are
used in the construction of efficient 1/0 subsystems. In Chapter 13, we discuss
how the 1/0 subsystem interfaces to the other system components, manages
devices, transters data, and detects 170 completion.

It a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-
tion from the operating system. For example, memory-addressing hardware
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so
the integrity of the various peripheral devices is protected.

Protection, ther, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
provide means for specitication of the controls ta be imposed and means for
entorcement.
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Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that
is maltunctioning. An unprotected resource cannot defend against use (or
misuse} by an unauthorized or incompetent user. A protection-oriented svstem
provides a means to distinguish between authorized and unauthorized usage,
as we discuss in Chapter 17.

A system can have adequate protection but stilt be prone to failure and
allow inappropriate access. Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working, It is
the jobr of security to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
service attacks (which use all of a system’s resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is consider an operating-

- system function on some svstems, while others leave the prevention to policy
or additional software. Due to the alarming rise in security incidents, operating-
system security features represent a fast-growing area of research and of
implementation. Security is discussed in Chapter 18.

Protection and security require the system to be able to distinguish among
all its users. Most operating systems maintain a list of user names and
associated user identifiers (user IDs). In Windows NT parlance, this is a security
ID (SID). These numerical IDs are unique, one per user. When a user logs in
to the system, the authentication stage determines the appropriate user 11 for
the user. That user 10} is associated with all of the user’s processes and threads.
When an ID needs to be user readable, it is translated back to the user name
via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX system mayv be
allowed to issue all operations on that file, whereas a selected set of users may
only be allowed to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be implemented as a system-wide list of group names and group identifiers,
A user can be in one or more groups, depending on operating-system design
decisions. The user’s group IDs are also included in every associated process
and thread.

In the course of normal use of a system, the user ID and group 1D for a user
are sufficient. However, a user sometimes needs to escalate privileges to gain
extra permissions for an activity. The user may need access to a device that is
restricted, for example, Operating systems provide various methods to allow
privilege escalation. On UNIX, for example, the setuid attribute on a program
causes that program to run with the user ID of the owner of the file, rather than
the current user’s 1D. The process runs with this effective UID until it Hirns off
the extra privileges or terminates. Consider an example of how this is done in
Solaris 1). User pbg has user 1 101 and group 1D 14, which are assigned via
/etc/passwd: pbg:x:101:14:: /export/home/pbg: /usr/bin/bash
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A distributed system is a collection of physically separate, possibly heteroge-
neous computer systems that are networked to provide the users with access
to the various resources that the system maintains. Access to a shared resourc
increases computation speed, functionality, data availability, and reliabilité
Some operating systems generalize netwark access as a form of file access, wit
the details of networking contained in the network interface’s device driver.

thers make users specifically invoke network functions. Generally, systems
é)::am a mix of the two modes—for example FIP and NFS. The protocols

create-a distributed system can greatly affect that system’s utility and

popularity.

A netwdrk, in-the simplest terms, is a communication path between
twoor more system‘%Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport med(i)i‘erP/ IP is the most common network protocol,
although ATM and other protocels are in widespread use) Likewise, operating-
system support of protocols varies. Most operating sysfems support TCP/IP,
including the Windows and UNIX operating systems. Some systems support
proprietary protocols to suit their needs. To an operating system, a network
protocol simply needs an interface device —a network adapter, for example—
with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a floor,
or a building. A wide-area network (WAN) usually links buildings, cities,
or countries. A global company may have a WAN to connect its offices
worldwide. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a metropolitan-area network (MAN) could link buildings within
a city. BlueTooth and 802.11 devices use wireless technology to communicate
over a distance of several feet, in essence creating a small-area network such
as might be found in a home.

The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellutar phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity. A
network operating system is an operating system that provides features such
as file sharing across the network and that includes a communication scheme
that allows different processes on different computers to exchange messages.

. A computer running a network operating system acts autonomousiy from all

other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment: The different operating
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systems communicate closely enough to provide the illusion that only a single
operating system controls the network.

We cover computer networks and distributed systems in Chapters 14
through 16

The discussion thus far has focused on general-purpose computer systems
that we are all familiar with. There are, however, different classes of computer
systemns whose functions are more imited and whose objective is to deal with
limited computation domains.

1.11.1 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robets to VCRs and microwave ovens. They tend to have very specific tasks,
The systems they run on are usually primitive, and so the operating systems
provide limited features. Usually, they have little or no user interface, preferring
to spend their time monitoring and managing hardware devices, such as
automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems—such as UNIX—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices
with application-specific integrated circuits (ASICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as members of networks and the Web,
is sure to increase as well. Even now, entire houses can be computerized, so
that a central computer —either a general-purpoese computer or an embedded
system-—can control heating and lighting, alarm systems, and even coffee
makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator may call the grocery store
wher it notices the milk is gone.

Embedded svstems almost always run real-time operating systems. A
real-time systemn is used when rigid time requirements have been placed on
the operation of a processor or the flow of data; thus, it is often used as a
control device in a dedicated application. Sensors bring data to the computer.
The computer must analyze the data and possibly adjust controls to modify
the sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real-
time systems. Some automaobile-engine fuel-injection svstems, home-appliance
controllers, and weapon svstems are also real-time svstems.

A reai-time systen' has well-defined, fixed time constraints. Processing
niust e done within the defined constraints, or the svstem will fail. For instance,
it would not do for a robot arm to be instructed to halt after it had smashed
into the car it was building. A real-time svstem tunctions correctly only if it
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returns the correct result within its time constraints, Contrast this system with
a time-sharing system, where it is desirable (but not mandatory) to respond
quickly, or a batch system, which mav have no time constraints at all.

In Chapter 19, we cover real-time embedded systems in great detail. In
Chapter 5, we consider the scheduling facility needed to impiement real-time
functionality in an operating system. In Chapter 9, we describe the design
of memory management for real-time computing. Finally, in Chapter 22, we
describe the real-time components of the Windows XI' aperating, svstem.

1.11.2 Muitimedia Systems

Most operating svstems are designed to handle conventional data such as
text files, programs, word-processing documents, and spreadsheets, However,
a recent trend in fechnology is the incorporation of multimedia data into
computer systems. Multimedia data censist of audio and video files as well as
conventional files. These data ditfer from conventional data in that multimedia
data—such as frames of video—must be delivered (streamed) according to
certain time restrictions (for example, 3 frames per second).

Multimedia describes a wide range of applications that are in popular use
todav. These include audio files such as MP3 DVD movies, video conferencing,
and short video clips of movie previews or news stories downloaded over the
Internet. Multimedia applications mav also include live webcasts (broadcasting
over the World Wide Web) of speeches or sporting events and even live
webcams that allow a viewer in Manhattan to observe customers at o cafe
in Paris. Multimedia applications need not be either audio or video; rather, o
multimedia application often includes a combination of both. For example, a
movie may consist of separate audio and video tracks, Nor must multimedia
applications be delivered only to desktop personal computers. Increasingly,
they are being directed toward smaller devices, including PDas and cellular
telephones. Far example, a stock trader may have stock quotes delivered
wirclessly and in real time to his PDA

in Chapter 20, we explore the demands of muttimedia applications, how
multimedia data differ from conventional data, and how the nature of these
data affects the design of operating svstems that support the requirements of
multimedia systems.

1.11.3 Handheld Systems

Handheld systems include personal digital assistants {PIDAs), such as Paim
and Pocket-I'Cs, and cellular telcphuncs, many of which use special- pu:pnsc
embedded operating svstems. Developers of handheld systems and applica-
tions face many LhalJenoes most of which are due to the limited size of such
devices. For e\(amp]e, a ' is typically about 5 inches in height and 3 inches
in width, and it weighs less than one-half pound. Because of their size, most
handhetd devices have a small amount of memory, slow processors, and small
display screens. We will take a look now at each of these limitations.

The amount of physical memory ina handheld depends upon the device,
but typically is is somewhere between 312 KB and 128 MB, (Contrast this with a
typical PC or workstation, which may have several gigabytes of memory!)
As a result, the operating svstem and applications must manage memory
efficiently. This includes returning all allocated memory back 10 the memory
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manager when the memory s not being used. [n Chapter 9, we will explore
virtual memory, which allows developers to write programs that behave as if
the svstem has more memery than is physically available. Currentiy, not many
handheid devices use virtual MeMoETy tuhmqucs 50 program developers must
work within the confines of limited plwsiml memaory.

A second issue of concern to developers of handheld devices is the speed
of the processor used in the devices. Processors for most handheld devices
run at a fraction of the speed of a pracessor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require
a larger battery, which would take up more space and would have to be
replaced (or recharged) more frequently. Mest handheld devices use smaller,
slower processors that consume less power. Theretore, the operating svstem
and @ pplications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is 1/0.
Alack of phvsical space Limits input methods to small keyboards, handwriting
recognition, or small screen-based keyboards. The small display screens limit
output options. Whereas a monitor for a home computer may measure up to
30 inches, the display for a handheld devige is often no more than 3 inches
square. Familiar tasks, such as reading e-mail and browsing web pages, must
be condensed into smaller displays, One approach for displaying the content
it web pages is web clipping, where only a small subset of a web page is
delivered and displaved on the handheld device.

Some handheld devices use wircless technology, such as BlueTooth or
BU2.11, allowing remote access to e-maii and web browsing. C cllular telephones
with connectiv 1t\ to the Internet falt into this category. How 1, for PIAs that
do not provide wireless access, downloading data typically mquims the user
to first downlead the data to a PC or workstation and then download the data
to the PRA. Some PDAs allow data te be directly copied from one device to
another using an intrared hnk,

Cenerally, the limitations in the Tunciionality of Pbas are balanced by
their convenience and portability, Their use continues to expand as network
connections become more aviailable and other options, such as digital cameras
and MIT3 plavers, expand their utility.

S0 far, we have provided an overview of computer-system organization and
major operating-svstem components. We conclude with a bricf overview of
how these are used in a variety of computing environments.

1.12.1 Traditional Computing

As cumputing matures, the lines separating many of the traditional computing
environments are blurring. Consider the “tvpical office environment.” Just a
few vears ago, this environment consisted of 'Cs connected to a network,
with servers previding tile and print services. Remote access was awkward,
and pertability was achieved by use of laptop computers. Terminals attached
to maintrames were prevalent at many companies as well, with even fewer
remote access and portability options.
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The current trend is toward providing more wayvs to access these computing
environments. Web technologies are stretching the boundaries of traditional
computing. Companics establish portals, which provide web accessibility
to their internal servers.(Network computers are essentially terminals that
understaind web-based co ingjHandheld computers can synchronize with
PCs to allow very portable use ofCompany information. Handheld PDAs can
also connect to wireless networks to use the company’s web portal (as well as
the myriad other web resources). m/

Athome, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Today, network-connection speeds once
available only at great cost are relatively inexpenstve, giving home users more
access to more data. These fast data connections are allowing home computers
to serve up web pages and to run networks that include printers, client PCs,
and servers.fSome homes even have firewalls to protect their networks from
security bre ose firewalls gost thousands of dollars a few years ago
and did not even exist a decade ago

In the latter half of the previousgcentury, computing resources were scarce.
(Before that, they were nonexistent!) For a period of time, systems were either
batch or interactive. Batch system processed jobs in bulk, with predetermined
input {from files or other sources of data). Interactive svstems waited for
input from users. To optimize the use of the computing resources, multiple
users shared fime on these systems. Time-sharing systems used a timer and
scheduling algorithms to rapidly cycle processes through the CPU, giving cach
user a share of the resources,

Today/ traditional time-sharing systems are uncommeon} The same schedul-
ing techijque is still in use on workstations and servery but frequently the
processes are all “owned by the same user (or a single user and the operating
B ystem). User processes, and system processes that prowde services to the user,
are managed so that each frequently gets a slice of computer time. Consider
the windows created while a user is working on a PC, for example, and the fact
that they may be performing different tasks at the same time.

1.12.2 Client-Server Computing

As PCs have become faster, more powerful, and cheaper, designers have
shifted away from centralized system architecture. Terminals connected to
centralized systems are now being supplanted by PCs. Correspondinglv, user-
intertace functionality once handlcd directly by the centralized systems is
increasingly being handled by the 'Cs. Asa result, many of tedays systems act
as server systems to satisty requests generated by client 5ystems This form
of specialized distributed system, (_d”L‘d client-server system, has the general
structure depicted in Figure 1.11. _

Server systems can be broadly categorized as compute servers and file
servers:

The compute-server system provides an interface to which a client can
send a request to perform an action (for example, read data); in response,
the server executes the action and sends back results to the client. A server
running a database that responds to client requests for data is an example
of such a system.
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Figure 1.11 General structure of a client-server system.

network

The file-server system provides a file-system interface where clients can
create, update, read, and delete files, An example of such a system is a web
server that delivers files to clients running web browsers.

1.12.3 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
madel. In this model, clients and servers are not distinguished from one
another; instead, all nodes within the system are considered peers, and cach
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from—other nodes in the network, Determining
what services are available ts accomplished in one of two general ways:

@i};f} a node joins a network, it registers its service with a centralized

up service on the networkKNAny node desiring a specific service first
contacts this centralized lookup/service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

é peer acting as a chent must first discover what node provides a desired
service by broadcasting a request for the service to all other nodes in the
network=Jhe node (or nodes) providing that service responds tq the peer_
making t requeﬂ To support this approach a discovery pmtmfi}nuqt be”
provided that allows peers to discover services provided by oth
the network,

peers in

Peer-to-peer networks gained widespread popularity in the late 1990s with
severdattile-sharing services, such as Napster and Gnutella, that enable pgérs
to exchange files with one another. The Napster system uses an approach
similar to the first type described ab()ve.ga centralized server maintains an
index of all files stored on peer nodes in t pster network, and the actual
exchanging of files takes place between the peer nodeg The Gnutella systemn
uses a technique similar to the second type: a dient Broadcasts file requests
to other nodes in the system, and nodes that can setvice the request respond
directly to the client. The future of exchanging files remains uncertain because
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many of the files are copyrighted (music, for example), and there are
governing the distribution of copyrighted material. In any case, though, peer-
to-peer technology undoubtedly will play awle in the future of many setui
such as searching, file exchange, and e-mail.

1.12.4 Web-Based Computing

The Web has become ubiquitous, leading té more access by a wider v ariety of
devices than was dreamt of a few vears ago. PCs are still the most prevalent
access devices, with workstations, handheld DAs, and even cell phones also
provjding access.

eb ComputinU has increased the emphasis on networking. Devices that
wl previeusly networked now include wired or wireless access. Devices
that were networked new have faster network connectiv ity, provided by either
improved networking technology, optimized network lmplomentatl(m code,
or both.

The implementation of web-based computing has given rise to new
categories of devices, such as load balancers, which distribute network
connections among a pool of similar servers. Operating systems like Windows
95, which acted as web clients, have evplved into Linux and Windows XP, which
can act as web servers as well as clienty, Generally, the Web has increased the
complexity of devices, because their ugers require them to be web-enabled.

An operating system is software that manages the computer hardware as well
as providing an environment for application programs to run. Perhaps the
most visible aspect of an operating system is the interface to the computer
system it provides to the human user.

For a computer to do its job of executing programs, the programs must be
in main memory. Main memory is the only large storage area that the processor
canaccess directly. It is an array of words or bytes, ranging in size from millions
to billions. Each word in memory has its own address. The main memory is
usually a volatile storage device that loses its contents when power is turned off
or lost. Most computer systems provide secondary storage as an extension of
main memory. Secondary storage provides a form of non-volatile storage that
is capable of holdmg large quantities of data permanently. The most common
sccondary-storage device is a magnetic disk, which provides storage of both
programs and data.

The wide varicty of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,
but they are fast. As we move down the hierarchy, the cost per bit generally
decreases, whereas the access time generally increases.

There are several different strategies for designing a computer system.
Uniprocessor systems have only a single processor while mulhprocesaor
systems contain two or more processors that share physical memory and
perlpherai devices. The most common multiprocessor design is symmetric
multiprocessing (or SMP), where all processors are considered peers and run
independently of one another. Clustered systems are a specialized form of



1.13 35

multiprocessor systems and consist of multiple computer systems connected
by a local area network.

To best utilize the CPL, modern operating systerns employ multiprogram-
ming, which allows several jobs tobe in memory at the same time, thus ensuring
the CIPU always has a job to execute. Timesharing systems arc an extension
of multiprogramming whercby CPU scheduling algorithms rapidly switch
between jobs, thus providing the illusion cach job is running concurrently.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper opera tion of
the system, the hardware has two modes: user mode and kernel mode. Various
instructions (such as 170 instructions and hatt instructions) are privileged and
can be executed only in kermel mode. The memory in which the operating
system resides must also be protected from madification by the user. A timer
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, and timer interrupt) are basic buitding blocks used by
operating systems te achieve correct operation.

A process (o1 job) is the fundamental unit of work in an operating system.
Process management includes creating and deleting processes and providing
mechanisms tor processes to communicate and synchronize with another.
An operating system manages memory by keeping track of what parts of
memory are being vsed and by whom. The operating system is also responsible
for dynamically allocating and freeing memory space. Storage space is also
managed by the operating system and this includes providing file systemns for
representing files and directories and managing space on mass storage devices.

Operating systems must also be concerned with protecting and securing
the operating system and users. Protection are mechanisms that control the
access of processes or users to the resources made available by the computer
system. Security measures are responsible for defending a computer system
from external or internal attacks.

Distributed systems allow users to share resources on geographically
dispersed hosts connected via a computer network. Services may be provided
through either the client-server model or the peer-to-peer model. Tna clustered
system, multiple machines can perform computations on data residing on
shared storage, and computing can continue even when some subset of cluster
members fails.

LANs and WANs are the two basic tvpes of networks. LANs cnable
processors distributed over a small geographical area to communicate, whereas
WANs allow processors distributed over a larger area to communicate, LANs
typically are faster than WANs.

There are several computer systems that serve specific purposes. These
include real-time opcrating systems designed for embedded environments
such as consumer devices, automobiles, and robotics. Real-time operating
systems have well defined, fixed time constraints. Processing miust be done
within the defined constraints, or the svstem wili fail. Multimedia systems
involve the delivery of multimedia data and often have special requirements of
displaying or playing audio, video, or synchromzed au‘ij’m and video streams.

Recently, the influence of the Internet and the World Wide Web has
encouraged the development of modern operating systems that include web
browsers and networking and communication software as integral features.
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1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in varicus
security problems.

a. What are two such problems?

b. Can we ensurc the same degree of security in a time-shared
machine as in a dedicated machine? Explain vour answer.

The issue of resource utilization shows up in different forms in different
types of operating systems. List what resources must be managed
careful]_v in the following settings:

a. Mainframe or minicomputer systems
b. Workstations connected to servers
¢. Handheld compuiters

Which of the functionalities listed below need to be supported by the
operating system for the following two settings: (a) handheld devices
and (b) real-time systems.

a. Batch programming
b. Virtual memory
c. Time sharing

Describe the differences between symmetric and asvmmetric multipro-
cessing. What are three advantages and one disadvantage of multipro-
cessor systems?

Distinguish between the client—server and peer-to-peer models of
distributed systcms.

Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of
each.

What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?

Direct memory access is used for high-speed 1/0 devices in arder to
avoid increasing the CPU’s execution load.

a. How does the (I'U interface with the device to coordinate the
transfer?

b. How does the CI'U know when the memory operations are
complete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
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interference are caused.

1.9 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

110 Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems
b. Multiprocessor systems
¢. Distributed systems

1.11  What network configuration would best suit the following environ-
ments?

a. A dormitory floor

b. A university campus
¢. A state

d. A mnation

1.12 Define the essential properties of the following tvpes of operating
svstems:

a. Batch
b. Interactive
¢. Time sharing,
d. Real time
e. Network
f. Parallel
. Distributed
h. Clustered
i. Handheld

Brookshear [2003] provides an overview of computer science in general.

An overview of the Linux operating system is presented in Bovet and
Cesati J2002]. Solomon and Russinovich [2(]00[ give an overview of Microsoft
Windews and considerable technical detail about the system internals and
components. Mauro and McDougall [2001] cover the Solaris operating system.
Mac 08 X is presented at http:/ /www.apple.com/macosx.

Coverage of peer-to-peer systems includes Parameswaran et al. [2001],
Gong [2002], Ripeanu et al. [2002], Agre [2003], Balakrishnan et al. [2003], and
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Loo [2003]. A discussion on pecr-to-peer file-sharing systems can be found in
Lee [2003]. A good coverage of cluster computing is presented by Buvya [1999].
Recentadvances in cluster computing are described by Ahmed [2000]. A survey
of issues relating to operating systems support for distributed svstems can be
found in Tanenbkaum and Van Renesse [1985].

Many general textbooks cover operating systems, including Stallings
[2000b], Nutt [2004] and Tanenbaum [2001].

Hamacher et al. [2002] describes computer organization. Hennessy and
Patterson [2002] provide coverage of 1/0 systems and buses, and of system
architecture in gencral. ,

Cache memaories, including associative memory, are described and ana-
lvzed by Smith [1982]. That paper also includes an extensive bibliography on
the subject.

Discussions concerning magnetic-disk technology are presented by Freed-
man [1983] and by Harker et al. [1981]. Optical disks are covered by Kenville
[1982], Tujitani [1984], O'Leary and Kitts [1985], Gait [1988], and Olsen and
Kenley [1989]. Discussions of floppy disks are offered by Pechura and Schoeffler
[1983] and by Sarisky [1983]. General discussions concerning mass-storage
technology are offered by Chi [1982] and by Hoagland [1985].

Kurose and Ross [2005), Tanenbaum 12003], Peterson and 1avie |1 996], and
Halsall [1992] provide general overviews of computer networks. Fortier [1989]
presents a detailed discussion of networking hardware and software.

Wolf [2003] discusses recent developments in developing embedded sys-
tems. Tssues related to handheld devices can be found in Myers and Beigl [2003]
and Di Pietro and Mancini [2003).
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An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. The design of a new opcerating
system is a major task. It is important that the goals of the system be wedl
defined before the design begins. These goals form the basis for choices among
various algorithms and strategies,

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showing the viewpoints of users, programmers, and operating-system
designers. We consider what services an operating system provides, how they
are provided, and what the various methedologies are for designing such
systems. Finally, we describe how operating systems are created and how a
computer starts its operating systemn,

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system SOTVICEes
are provided for the convenience of the programmer, to make the programming
task casier.

One sef of operating-system services provides functions that are helptul to
the user.

User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. One is a command-line interface
(LD, which uses text commands and a method for entering them (say, a
program to allow entering and editing of commands). Another is a batch
interface, in which commands and directives to control those commands
are entered into files, and those files are executed. Most commonly, a
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graphical user interface (GUT) is used. Here, the interface is a window
system with a pointing device to direct 1/0, choose from menus, and make
selections and a keyboard to enter text. Some systems provide two or all
three of these variations.

Program execution. The svstem must be able to load a pregram into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

VO operations. A running program may require 1/Q, which may involve a
file or an 1/0 device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a CRT screen). For
efficiency and protection, users usually cannot control 170 dev ices directly.
Therefore, the operating system must provide a means to do 1/0.

File-system manipulation. The file system is of particular intcrest. Obvi-
ously, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and list file
information. Finally, some programs include permissions management to
allow or deny access to tiles or directories based on file ownership.

Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a computer network. Communications may be imple-
mented via shared memory or through message passing, in which packets of
information are moved between processes by the operating system.

Error detection. The operating system nceds to be constantly aware of
possible errors. Errors may occur in the CPU and memory hardware (such
asamemory error or a power failure), in 170 devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overtlow, an attempt to
access an illegal memory location, or a too-great use of CPU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing. Debugging facilities can greatly
enhance the user’s and programmer’s abilities to use the system efficiently.

Another set of operating-system functions exists not for helping the user

but rather for ensuring the efficient operation of the systemitself. Systems with
multiple users can gain efficiency by sharing the computer resources among
the users.

Resource allocation. When there are multiple users or multiple jobs
running at the same time, resources must be allocated to cach of them.
Many different types of resources are managed by the operating system.
Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, whereas others (such as 1/0 devices) may have much more
general request and release code. For instance, in determining how best to
use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CP'U, the jobs that must be executed, the number of
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registers available, and other factors. There may also be routines to allocate
printers, modems, USB storage drives, and other peripheral devices.

ccounting. We want to keep track of which users use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigure the system to improve computing services.

Protection and security. The owners of information stored ina multiuser or
networked computer system may want to control use of that information.
When several separate processes execute concurrently, it should not be
possible for one process to interfere with the others or with the operating
svstem itself. Protection involves ensuring that all access to system
resources is controlled. Security of the system from outsiders is also
important. Such security starts with requiring each user to authenticate
himself or herself to the system, usually by means of a password, to gain
access to system resources, It extends to defending external 1/0 devices,
including modems and network adapters, from invalid access attempts
and to recording all such connections for detection of break-ins. 1f a system
is to be protected and secure, precautions must be instituted throughout
it. A chain is only as strong as its weakest link.

There are two fundamental approaches tor users to interface with the operating
system. One technique is to provide a command-line interface or command
interpreter that allows users to directly enter commands that arc to be
perfurmed by the operating system. The second approach allows the user
to interface with the operating system via a graphical user interface or GUI.

2.21 Command Interpreter

Some operating systems include the command interpreter in the kernel. Others,
such as Windows XP and UNIX, treat the command interpreter as a special
proyram that is running when a job is initiated or when a user first logs
on (on interactive systems}), On systems with muitiple command interpreters
to choose from, the interpreters are known as shells. For example, on UNIX
and Linux systems, there are several different shells a user may choose from
including the Bewrne shell, C ahiell, Bourne-Again shell, the Korn shell, etc. Most
shells provide similar functionality with only minor differences; most users
choose a shell based upon personal preference.

The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipulate
files: create, delete, list, print, copy, execute, and so on. The M&-120S and UNIX
shells operate in this way. There are two general waysin which these commands
can be implemented.

In one approach, the command interpreter itself contains the code to
exectite the command. For example, a command to delete a file may cause
the command interpreter to jump to a section of its code that sets up the
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parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter,
since each command requires its own implementing cade.

An alternative approach—used by UNIX, among other operating systems
—implements most commands through svstem programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete o file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with
the parameter file. txt. The function associated with the rm command would
be detined completely by the code in the file rm. In this WAy, Programmers can
add new commands to the svstem casily by creating new fites with the proper
names. The command-interpreter program, which can be smail, does not have
to be changed for new commands to be added.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating svstem is through a user-
friendly graphical user interface or GUIL Rather than having users directly enter
commands via a command-line interface, a QU allows provides a mouse-based
window-and-menu svstem as an interface. A GUI provides adesktop metaphor
where the mouse s moved to position its pointer on images, or icons, on the
screen (the desktop) that represent programs, files, directories, and system
functions. Depending on the mouse pointer’s location, clicking a button on the
mouse can invoke a program, seleci a file or directory —known as a folder—
or pull down o menu that contains commands.

Graphical user interfaces first sppeared duein partto rescarch taking place
in the early 19705 at Xerox PARC rescarch facility. The first GUI appeared on
the Xerox Alto computer in 1973, However, graphical interfaces became more
widespread with the advent of Apple Macintesh com puters in the 1980s. The
uscr interface to the Macintosh operating system (Mac 0s) has undergone
various changes over the vears, the most significant being the adoption of
the Agua interface that appeared with Mac 08 X. Microsoft's first version
of Windows-—version 1.0—was based upon a GUI interface to the MS-DOS
operating system. The various versions of Windows systems proceeding this
initial version have made cosmetic changes to the appearance of the GUI and
several enhancements to its functiomality, including the Windows Explorer.

Traditionally, UNIX systems have been dominated by command-line inter-
faces, although there are various GUI interfaces available, including the Com-
mon Desktop Environment (COE) and X-Windows systems that are common on
commoercial versions of UNIX such as Solaris and [BM's AIX system. However,
there has been significant development in GUI designs from various open-
source projects such as K Desktop Environment (or KDL) and the GNOME desktop
by the GNU project. Both the KDI and GNOME desktops run on Linux and
various UNIX svstems and are available under open-source licenses, which
means their source code is in the public domain.

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNEX users prefer
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a command-line interface as they often provide powerful shell interfaces.
Alternatively, most Windows users are pleased to use the Windows GUI
environment and almost never use the MS-1)0s shell interface, The various
changes undergone by the Macintosh operating systems provides a nice study
in contrast. Historically, Mac 05 has not provided a command line interface,
abwavs requiring its users to interface with the operating svstem using its GLI.
However, with the release of Mac 05 X (which is in part implemented using a
UNIX kernel), the operating system now provides both a new Aqua interface
and command-line interface as well.

The user interface can vary from system to system and even from user
to user within a system, It typically is substantially removed from the actu al
system structure. The design of a useful and friendly user interface is therefore
not a direct function of the operating svstem. In this book, we concentrate on
the fundamental problems of providing adequate service tO User programs.
From the point of view of the operating system, we do not distinguish between
user programs and system programs.

System calls provide an interface to the services made available by an operating
system. These calls are generally available as routines written in C and
CHt, a]th(mgh_ccrtain low-level tas_ks {for example, tasks where hardware
must be accessed directly), may need to be written using assembly-language
mstructions.

Before we discuss how an operating system makes system calls available,
let's first use an example to illustrate how system calls are used: writing a
simp e program to read data from ene file and copy’ them to another file. The
first input that the program will need is the names af the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the
user for the names of the two files, In an interactive system, this approach will
require a sequence of system calls, first to write a prompting message on the
screen and then to read from the keyboard the characters that define the two
files. On mouse-based and icon-based systemns, a menu of file names is usually
displaved in a window. The user can then use the mouse to select the source
name, and a window can be opened for the destination name to be specified.
This sequence requires many /0 system calls.

Chce the two file names are obtained, the program must open the inpuat file
and create the output file. Each of these operations requires another svstem call.
There are also possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that name or that
the file is protected against access. In these cases, the program should print a
message on the console (another sequence of system calls) ang then terminate
abnormally (another system call). If the input file exists, then we must create a
new output file. We may find that there is already an output file with the same
name. This situation may cause the program to abort {a system call), or we
may delete the existing file (another system call) and create a new one (another
systemy call). Another option, in an interactive system, is to ask the user (via
a secuence of system calls to output the prompting message and to read the
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response from the terminal) whether to replace the existing file or to abort the
program.

Now that botk: files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another syster call). Fach read
and write must returmn status information regarding various possible crror
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failure in the read (such as a parity crror).
The write operation may encounter various errors, depending on the output
device (no more disk space, printer out of paper, and so on).

Finally, after the entire file is copied, the program may close both files
{another system call), write a message to the console or window {more
system calls), and finally terminate normally (the final system call). As we
can see, even simple programs may makce heavy use of the operating system.
Frequently, systems execute thousands of system calls per second. This systerm-
call sequence is shown in Figure 2.1.

Most programmers never see this level of detail, however. Typically, appli-
cation developers design programs according to an application programming
interface (API). The API specifies a set of functions that are available to an
application programmer, including the parameters that are passed to each
function and the return values the programmer can expect. Three of the most
common APIs available to application programmers are the Win32 APl for
Windows systems, the POSIX AP for POSIX-based systems (which includes
virtually all versions of UNIX, Linux, and Mac OS X), and the Java APl for
designing programs that run on the Java virtual machine.

Note that the system-call names used throughout this text are generic
examples. Each operating system has its own name for each system call.

source file —| destination file 1

( Example System Cail Sequence
A

cquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
it file doesn't exist, abort
Create outpult fite
if file exists, abort
Locp
Read from input file
Write to output file
Unti! read fails
Close output file
Write completion message to screen
Terminate normailly Y.

-

Figure 2.1 Example of how system calls are used.
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Behind the scenes, the functions that make up an APl typically invoke the
actual system calls on behalf of the application programmer. For example,
the Win32 function CreateProcess() (which unsurprisingly is used to create a
new process) actually calls the NTCreateProcess() system call in the Windows
kernel. Why would an application programmer prefer programming according
to an API rather than invoking actual system calls? There are several reasons for
doing so. One benefit of programming according to an API concerns program
portability: An application programmer designing a program using an APl can
expect her program to compile and run on any system that supports the same
API (although in reality, architectural differences often make this more difficult
than it may appear). Furthermore, actual system calls can often be more detailed
and difficult to work with than the APl available to an application programmer.
Regardless, there often exists a strong correlation between invoking a function
in the API and its associated system call within the kernel. In fact, many of the
POSIX and Win32 APIs are similar to the native system calls provided by the
UNIX, Linux, and Windows operating systems.

The run-time support system (a set of functions built into libraries included
with a compiler) for most programming languages provides a system-call
interface that serves as the link to system calls made available by the operating
system. The system-call interface intercepts function calls in the API and
invokes the necessary system call within the operating system. Typically, a
number is associated with each systern call, and the system-call interface
maintains a table indexed according to these numbers. The system call interface
then invokes the intended system call in the operating system kernel and
returns the status of the system call and any return values.

The caller needs to know nothing about how the system call is implemented
or what it does during execution. Rather, it just needs to obey the API and
understand what the operating system will do as a result of the execution of

user application

open ()
user
mode [ PR e
— B4 gystem call interface
kernel i :
rnode A
| open ()
. Implementation
T TR —» of open ()
. sysiem call
return

Figure 2.2 The handiing of a user application invoking the open() system call.
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X

register
X: parameters
for call _
*| use parameters | | code for
load address X _/ fromtableX . | »svstem
system call 13 A ————%" || call13

user program

operating system
Figure 2.3 Passing of parameters as a table.

that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the APl and are managed by the run-time
support library. The relationship between an AP, the system-call interface,
and the operating system is shown in Figure 2.2, which illustrates how the
operating system handles a user application invoking the open() system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and
length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating system.
The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in a block, or table, in memory, and the address
of the block is passed as a parameter in a register (Figure 2.3). This is the
approach taken by Linux and Solaris. Parameters also can be placed, or pushed,
onto the stack by the program and popped off the stack by the operating system.
Some operating systems prefer the block or stack method, because those
approaches do not limit the number or length of parameters being passed.

System calls can be grouped roughly into five major categories: process
control, file manipulation, device manipulation, information maintenance,
and communications. In Sections 2.4.1 through 2.4.5, we discuss briefly the
types of system calls that may be provided by an operating system. Most of
these system calls support, or are supported by, concepts and functions that
are discussed in later chapters. Figure 2.4 summarizes the types of system calls
normally provided by an operating system.



< Process control
¢ end, abort
o load, execute
o create procesé, terminate process
¢ get process attributes, set process attributes
© wait for time
o wait event, signal event
o allocate and free memory

File management
o create file, delete file

© open, close
o read, write, reposition .
o get file attributes, set file attributes ' \

*  Device management
o request device, release device

o read, write, reposition-
o get device attributes, set device attributes
o logically attach or detach devices

*  Information maintenance
o get time or date, set time or date

© get system data, set systemn data
o get process, file, or device attributes
o set process, file, or device attributes

# Communications
o create, delete communication connection

v send, receive messages
o transfer status information

o attach or detach remote devices

Figure 2.4 Types of system calls.

2.4.1 Process Control

A running program needs to be able to halt its execution either normally (end)
ot abnormaily (abort). If a system call is made to terminate the currently
running program abnormally, or if the program runs into a problem and
causes an errur trap, a dump of memory is sometimes taken and an error
message generated. The dump is written to disk and may be examined by a
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debugger—a system program designed to aid the programmer in finding and
carrecting bugs—to determine the cause of the problem. Under either normal
or abnormal circumstances, the operating system must transfer control to the
invoking command interpreter. The command interpreter then reads the next
command. In an interactive system, the command interpreter simply continues
with the next command,; it is assumed that the user will issue an appropriate
command to respond to any error. In a GUI system, a pop-up window might
alert the user to the error and ask for guidance. In a batch system, the command
interpreter usually terminates the entire job and continues with the next job.
Some systemns allow contral cards to indicate special recovery actions in case
an error occurs. A control card is a batch system concept. It is a command to
manage the execution of a process. If the program discovers an error in its input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. It is then
possible to combine normal and abnormal termination by defining a normal
termination as an error at level 0. The command interpreter or a following
program can use this error level to determine the next action automatically.

. A process or job executing one program may want o load and execute
another program, This feature allows the command interpreter to execute a

‘program as directed by, for example, a user command, the click of a mouse,

or a batch command. An interesting question is where to return control when
the loaded program terminates. This question is related to the problem of
whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.

If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have
effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new job or process to
be multiprogrammed. Often, there is a system call specificalty for this purpose
(create process or submit job).

If we create a new job or process, or perhaps even a set of jobs or processes,
we should be able to control its execution. This control requires the ability
to determine and reset the attributes of a job or process, including the job's
priority, its maximum allowable execution time, and so on (get process
attributes and set process attributes). We may also want to terminate
a job or process that we created (terminate process) if we find that it is
incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them to
finish their execution. We may want to wait for a certain amount of time to
pass (wait time); more probably, we will want to wait for a specific event
to occur (wait event). The jobs or processes should then signal when that
event has occurred (signal event).System calls of this type, dealing with the
coordination of concurrent processes, are discussed in great detail in Chapter
6.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump memory. This pmwsmn is useful for
debu%gmg A program trace lists each instruction as it is executed; it is

ed by fewer systems. Even microprocessors provide a-CPU mode known
as single step, in which a trap is executed by the CPU after every instruction.
The trap is usually caught by a debugger.
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Figure 25 MS-DOS execution. (a) At system startup. (b) Running a program.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program
counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

There are so many facets of and variations in process and job control that
we next use two examples—one involving a single-tasking system and the
other a multitasking system —to clarify these concepts. The MS-DOS operating
system is an example of a single-tasking system. It has a command interpreter
that is invoked when the computer is started (Figure 2.5(a)). Because MS-DOS
is single-tasking, it uses a simple method to run a program and does not create
a new process. It loads the program into memory, writing over most of itself to
give the program as much memory as possible (Figure 2.5(b)). Next, it sets the
instruction pointer to the first instruction of the program. The program then
runs, and either an error causes a trap, or the program executes a system call
to terminate. In either case, the error code is saved in the system memory for
later use. Following this action, the small portion of the command interpreter
that was not overwritten resumes execution. Its first task is to reload the rest
of the command interpreter from disk. Then the command interpreter makes
the previous error code available to the user or to the next program.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user’s choice
is run. This shell is similar to the MS-DOS shell in that it accepts commands
and executes programs that the user requests. However, since FreeBSD is a
multitasking system, the command interp.eter may continue running while
another program is executed (Figure 2.6) To start a new process, the shell
executes a fork() system call. Then, the selected program is loaded into
memory via an exec () system call, and the program is executed. Depending
on the way the command was issued, the shel] then eithér waits for the process
to finish or runs the process “in the background.” In the latter case, the shell
immediately requests another command. When a process is running in the
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process D

free memory

process C

interpreter

process B

fFigure 2.6 FreeBSD running multiple programs.

background, it cannot receive input directly from the keyboard, because the
shell is using this resource. I/0 is therefore done through files or through a GuI
interface. Meanwhile, the user is free to ask the shell to run other programs, to

‘monitor the progress of the running process, to change that program’s priority,

and so en. When the process is done, it executes an exit () system call to
terminate, returnmg to the 1r1v01<1ng process a status code of 0 or a nonzero
error code. This status or error code is then available to the shell or other
programs. Processes are discussed in Chapter 3 with an program example
using the fork() and exec{) system calls.

2.4.2 File Management

The file system will be discussed in more detail in Chapters 10 and 11. We can,
however, identity several common system calls dealing with files,

We first need to be able to create and delete files. Fither system call
requires the name of the file and perhaps some of the file’s attribules. Once the
file is created, we need to open it and to use it. We may also read, write, or
reposition (rewinding or skipping to the end of the file, for example). Finally,
we need to close the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the
file name, a file type, protection codes, accounting information, and so on.
At least two system calls, get file attribute and set file attribute,
are required for this function. Some operating systems provide many more
calls, such as calls for file move and copy. Others might provide an API that
pe-forms those operations using code and other system calls, and others might
just provide system programs to perform those tasks. If the system programs
are callable by other programs, then each can be considered an API by other
system programs.
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2.4.3 Device Management

A process may need severa] resources to execute-——main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will
have to wait until sufficient resources are available.

~ The various resources controlled by the operating sysstem can be thought
of as devices. Some of these devices are physical devices (for example, tapes},
while others can be thought of as abstract or virtual devices (for examp]e
files). If there are multiple users of the system, the system may require us to

first request the device, to ensure exclusive use of it. After we are finished

with the device, we release it. These functions are similar to the open and
close system calls for files. Other operating systems allow unmanaged access
to devices. The hazard then is the potential for device contention and perhaps
deadlock, which is described in Chapter 7.

" Once the device has been requested (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In fact,
the similarity between 1/0 devices and files is so great that many operating
systems, including UNIX, merge the two into a combined file—device structure.
In this case, a set of system calls is used on files and devices. Sometimes,
1/0 devices are identified by special file names, directory placement, or file
atributes. _

The Ul can also make files and devices appear to be similar, even though
the underlying system calls are dissimilar. This is another example of the many
design decisions that go into building an operating system and user intertace.

2.4.4 Information Maintenance

Many systern calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most
systems have a system call to return the current time and date. Other system
calls may return information about the systern, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

In addition, the operating system keeps information about ail its processes,
and system calls are used to access this information. Generall{, calls are
also used to reset the process information (get process attributes and
set process attributes). In Section 3.1.3, we discuss what information is
normally kept.

2.4.5 Communication

There are two common models of interprocess communication: the message-
passing model and the shared-memory model. In the message-passing model,
the communicating processes exchange messages with one another to transfer
information. Messages can be exchanged between the processes either directly
or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer
in a network has a host name by which it is commonly known. A host alse
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has a network identifier, such as an IP address. Similarly, each process has
a process name. and this name is translated into an identifier by which the
operating system can refer to the process. Theget hostidand get processid
system calls do this translation. The identifiers are then passed to the general-
purpose open and close calls provided by the file system or to specitic
open connection and close connection system calls, depending on the
system’s model of communication. The recipient process usually must give its
permission for communication to take place with an accept connectioncall.
Most processes that will be receiving connections are special-purpose daenions,
which are svstems programs provided for that purpose. They execute a wait
for comnec ioncalland are awakened when a connection is made. The source
of the communication, known as the client, and the receiving daemon, known as
a server, then exchange messages by using read message and write message
system calls, The close connection call terminates the communication.

In the shared-memory model, processes use shared memory create and
shared memory attach system calls to create and gain access to regions of
memory owned by other processes. Recall that, normally, the operating sysiem
tries to prevent one process from accessing another process’s memory. Shared
memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared
areas. The form of the data and the location are determined by the processes and
are not under the operating system’s control. The processes are also responsible
for ensuring that they are not writing to the same location simultaneously. Such
mechanisms are discussed in Chapter 6. Tn Chapter 4, we look at a variation of
the process scheme—threads—in which memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. [t is also easier to
implement than is shared memory for intercomputer communication. Shared
memory allows maximum speed and convenience of communication, since it
can be done at memory speeds when it takes place within a computer. Problems
exist, however, in the areas of protection and synchronization between the
processes sharing memory.

Another aspect of a modern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest levei is
hardware. Next is the operating system, then the system programs, and finally
the application programs. System programs provide a convenient environment
for program development and execution. Some of them are simply user
interfaces to system calls; others are considerably more complex. They can
be divided into these categories:

File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directuses,

Status information. Some programs simply ask the system fo. e date,
time, amount of available memory or disk space, numbcr o users, or
similar status information. Others are more complex, prow .ing detailed
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performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUL Some systems also support a
registry, which is used to store and retrieve configuration information.

File modification. Several text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may also be special commands to search contents of files or perform
transformations of the text.

Programming-language support. Compilers, assemblers, debuggers and
interpreters for common programming languages (such as C, C++, Java,
Visual Basic, and PERL) are often provided to the user with the operating
system.

Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
lozders. Debugging systems for either higher-level languages or machine
language are needed as well.

Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
/allow users to send messages to one another’s screens, to browse web
\pages, to send electronic-mail messages, to log in remotely, or to transfer
files from one machine to another.

In addition to systems programs, most operating systems are supplied
with programs that are useful in solving common problems or performing
common operations. Such programs include web browsers, word processors
and text formatters, spreadsheets, database systems, compilers, plotting and
statistical-analysis packages, and games. These programs are known as system
utilities or application programs.

The view of the operating system seen by most users is defined by the
application and system programs, rather than by the actual system calls.
Consider PCs. When his computer is running the Mac OS X operating system, a
user might see the GUI, featuring a mouse and windows interface. Alternatively,
or even in one of the windows, he might have a command-line UNIX shell. Both
use the same set of system calls, but the system calls look different and act in
different ways.

[n this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.6.1 Design Goals

The first probiemn in designing a system is to define goals and specifications.
At the highest level, the design of the system will be affected by the choice of
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hardware and the type of system: batch, time shared, single user, multiuser,
distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users desire certain obvious properties in a system: The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system: The system should be easy
to design, implement, and maintain; it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
varipus ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environinents. For example, the requirements for VxWorks, a real-
time operating system for.embedded systems, must have been substantially
different from those for MVS, a large multiuser, multiaccess operating svstem
for IBM mainframes.

Specifying and designing an operaling system is a highly creative task.
Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to
a discussion of some of these principles.

2.6.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism. Mecha-
nisms determine how to do something; policies determine what will be done.
For example, the timer construct (see Section 1.5.2) is a mechanism for ensuring
CPU protection, but deciding how long the timer is to be set for a particular
user is a policy decision.

The separation of policy and mechanism is important for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism insensitive to changes in policy would be more desirable. A change
in policy would then require redefinition of only certain parameters of the
system. For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism is properly separated from policy,
it can be used to support a policy decision that 1/0-intensive programs should
have priority over CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems (Section 2.7.3) take the separation of
mechanism and policy to one extreme by implementing a basic set of primitive
building blocks. These blocks are almost policy free, allowing more advanced
mechanisms and policies to be added via user-created kernel modules or via
user programs themselves. As an example, consider the history of UNIX. At
first, it had a time-sharing scheduler. In the latest version of Solaris, scheduling
is controlled by loadable tables. Depending on the table currently loaded,
the svstem can be time shared, batch processing, real time, fair share, or
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any combination. Making the scheduling mechanism general purpose allows
vast policy changes to be made with a single 1oad-new-table command. At
the other extreme is a system such as Windows, in which both mechanism
and policy are encoded in the system to enforce a global look and feel. All
applications have similar interfaces, because the interface itself is built into
the kernel and system libraries. The Mac OS X operating system has similar
functionality.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate a resource, a policy decision must
be made. Whenever the question is hott rather than what, it is a mechanism that
must be determined.

2.6.3 Implementation

Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are most commonly written in higher-level languages such as C or C++.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in
PL/1. The Linux and Windows XP operating systems are written mostly in C,
althcugh there are some small sections of assembly code for device drivers and
for saving and restoring the state of registers.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: The
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port—to move to some other hardware—
if it is written in a higher-level language. For example, MS-DOS was written in
Intel 8088 assembly language. Consequently, it is available on only the Intel
family of CPUs. The Linux operating system, in contrast, is written mostly in C
and is available on a number of different CPUs, including Intel 80X86, Motorola
680X0, SPARC, and MIPS RX000.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is no longer a major issue in today’s systems. Although an
expert assembly-language programmer can produce efficient small routines,
tor large programs a modern compiler can perform complex analysis and apply
sophusticated optimizations that produce excellent code. Modern processors
have deep pipelining and multiple functional units that can handle complex
dependencies that can overwhelm the limited ability of the human mind to
keep track of details.

As is true in other systems, major performance improvements in operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou-
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tines. After the system is written and is working correctly, bottleneck routines
can be identified and can be replaced with assembly-language equivalents.

To identify bottlenecks, we must be able to monitor system performance.
Code must be added to compute and display measures of system behavior.
In a number of systems, the operating system does this task by producing
trace listings of system behavior. All interesting events are logged with their
time and important parameters and are written to a file. Later, an analysis
program can process the log file to determine system performance and to
identify bottlenecks and inefficiencies. These same traces can be run as input
for a simulation of a suggested improved system. Traces also can help people
to find errors in operating-system behavior.

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and be modified easily. A
commeon approach is to partition the task into small components rather than
have one monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and functions.
We have already discussed briefly in Chapter 1 the common components
of operating systems. In this section, we discuss how these components are
interconnected and melded into a kernel.

2.7.1 Simple Structure

Many commercial systems do not have well-defined structures\. Frequently,
such operating systems started as small, simple, and limited systerns and then
grew beyond their original scopel MS-DOS is an example of such a sy:ster/n;}t was
originally designed and implemented by a few people who had no idea‘that it
would become so popular. It was written to provide the most functionality in

ROM BIOS device drivers s

Figure 2.7 MS-DOS layer structure.
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the least space, so it was not divided into modules carefully. Figure 2.7 shows

its structure.

In MS-DOS, the interfaces and levels of functionality are not well separate(;\
For.nstance, application programs are able to access the basic I/0 routines
to write directly to the display and disk drives. Such freedom leaves M5-DOS
vulnerable to errant (or malicious) programs, causing entire system crashes
when user programs fail. Of course, MS-DOS was also limited by the hardware
of its era. Because the Intel 8088 for which it was written provides no dual
mede and no hardware protection, the designers of MS-DXOS had no choice but
to leave the base hardware accessible.

Ancther example of limited structuring is the original UNIX operating
system(l;JDNIx is another system that initially was limited by hardware function;
ality. It ¢onsists of {wo separable parts: the kernel and the systemn programs.
The kernel is further separated into a series of interfaces and device drivers;
which have been added and expanded over the years as UNIX has evolved. We
can view the traditional UNIX operating system as being layered, as shown in
Figure 2.8. Everything below the system call interface and above the physical
hardware is the kernelglr‘}ée kernel provides the file system, CPU scheduling,
memory management, -other operating-system functions through system
cally, Taken in sum, that is an enormous amount of functionality to be com-
bined into one levei(’?his monolithic structure was difficult to implement and
maintain. . '

2.7.2 Lgered Approach

With proper hardware support, operating systems can be broken-into pieces
that are smaller and more appropriate than those allowed by the originat
MS-DOS or UNIX systems. The operating system can then retain much greater
control over the computer and over the applications that make use of that
computer. Implementers have more freedom in changing the inner workings
of the system and in creating modular operating systems. Under the top-

(the users)

shells and commands
compilers and interpreters
system libraries

[T = system-call interface to the kernel
- signals terminal file system CPU scheduiing
‘Lé_’ ) handling swapping block /0 page replacement
2 character i/O system system demand paging
terminal drivers disk and tape drivers virtual memory
i kermel intérface to the hardware
terminal controllers device controllers | memory controllers
terminais disks and tapes physical memory

Figure 28 UNIX system structure.
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Figure 29 A layered operating system.

dowr: approach, the overall functionality and features are determined and are
separated into components. Information hiding is also important, because i
leaves programmers free to implement the low-level routines as they see fit,
provided that the external interface of the routine stays unchanged and that
the routine itself performs the advertised task.

A system can be made modular in many ways. One method is the layered
approach, in which the operating system is broken up into a number of layers
(levels). The bottomn layer {layer 0) is the hardware; the highest (layer N) is the
user interface. This layering structure is depicted in Figure 2.9.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer-—say, layer M—consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invpke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
anddebugging\The layers are selected so that each uses functions (operations)
and services of jonly lower-level layers. This approach simplifies debugging
and system ver’iﬁcation.@z: first layer can be debugged without any concern
for the rest of the systemibecause, by definition, it uses only the basic hardware
{which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system is simplified

Bach layer is implemented with only those operations provided by lowe$-
levet layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.
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The major difliculty with the layered approach involves appropriately
fining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary\For example, the device driver for the backing
store (disk space used by virtual-memory algorithms) must be at a lower
level than the memory-management routines, because memory rmanhagement
requires the ability to use the backing ctore.

Other requirements may not be so obvious. The backing-store driver would
normally be above the CPU scheduler, because the driver may need to wait for
170 and the CPU can be rescheduled during this time. However, on a large
system, the CPU scheduler may have more information about all the active
processes than can fit in memory. Therefore, this information may need to be
swapped in and out of memory, requiring the backing-store driver routine to
be below the CPU scheduler.

é;m\] problem with layered implementations is that they tend to be less
efficient than other types)For instance, when a user program executes an 1/0
operation, it executes a system call that is trapped to the 170 layer, which calls
the memory-management layer, which in turn calls the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the parameters may be
madified, data may need to be passed, and so on. Each layer adds overhead to
the system call; the net resuit is a system call that takes longer than does one
on a nonlayered system. '

ese limitations have caused a small backlash against layering in recent
years. Kewer layers with more functionality are being designed, providing most
of the-advantages of modularized code while avoiding the difficult problems
of layer definition and interaction.

2.7.3 Microkernels

We have already seen that as UNIX expanded, the kerne! became large
and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operating system called Mach that modularized
the kernel using the microkemel approach. This method structurves the
operating system by removing all nonessential components from the kernel and
implementing them as system and user-level programs. The result is a smaller
kernel. There is httle consensus regarding which services should remain in the
kernel and which should be implemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility.

+ The main function of the microkernel is to provide a communication facility
between the client program and the various services that are also running
in user space. Communication is provided by message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

One benefit of the microkernel approach is ease of extending the operating
system. All new services are added to user space and consequently do not
require ntodification of the kernel. When the kernel does have to be modified,
the chafiges tend to be fewer, because the microkernel is a smaller kernel.
The resulting operating system is easier to port from one hardware design
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to another. [The microkemnel also provides more security and reliability, since
most services are running as user-—rather than kernel—processes. If a service
fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to
the user, but it is implemented with a Mach kernel. The Mach kernel maps
UNIX system calls intc messages to the appropriate user-level services.

@‘nother example is QNX. QNX is a real-time operating system that is also
based on the microkernel design) The QNX microkernel provides services
for message passing and procesg/scheduling. It also handles low-level net-
work communication and hardware interrupts. All other services in QNX are
provided by standard processes that run outside the kernel in user mode.

Unfortunately, microkernels can suffer from performance decreases due
to ifrereased system function overhead. Consider the history of Windows NT.
The first release had a layered microkesnel organization. However, this version
delivered low performance compared with that of Windows 95. Windows NT
4.0 partially redressed the performance problem by moving layers from user
space to kernel space and integrating them more closely. By the time Windows
XP was designed, its architecture was more monolithic than microkernel.

2.7.4 Modules

Perhaps the best current methodology for operating-system design involves
using object-oriented programming techniques to create a modular kernel.
Here, the kernel has a set of core components and dynamically links in
additional services either during boot time or during run time. Such a
strategy uses dynamically loadable modules and is common in modern
implementations of UNIX, such as Solaris, Linux, and Mac 0s X. For example, the
Solaris operating system structure, shown in Figure 2.10, is organized around
a core kernel with seven types of loadable kernel modules:

Scheduling classes
File systems

Loadable system calls

device and
bus drivers

core Soiaris
misceilaneous kermel loadakie
modules system calls
STREAMS
modules

Figure 2.10 Solaris ioadable modules.

scheduling
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executable
formats
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Miscellaneous

Device and bus drivers

Such a design allows the kernel to provide core services vet also allows
certain features to be implemented dyvnamically. For exampie, device and
bus drivers for specific hardware can be added to the kernel, and support
for different file systems can be added as loadable modules. The overalt
result resembles a lavered svstem in that each kernel section has defined,
protected interfaces; but it is more flexible than a lavered system in that anv
module can call any other module. Furthermore, the approach is like the
microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
i~ morte efficient, because modules do not need to invoke message passing in
arder to communicate. .

The Apple Macintosh Mac OS X operating system uses a hybrid structure.
Mac 0% X (also known as Darwin) structures the operating svstem using a
lavered technique where one layer consists of the Mach microkernet. The
structure of Mac OS X appears in Figure 2.11.

The top layers include application environments and a set of services
providing a graphical interface to applications. Below these layers is the kernel
environment, which consists primarily of the Mach microkernel and the BSD
kernel. Mach provides memory management; support for remote procedure
calls (RPCs} and interprocess communication {11°C) facilities, including message
passing; and thread scheduling. The BSD component provides a BSD command
line interface, support for networking and file systems, and an implementation
of POSIX APLs, including Pthreads. In addition to Mach and BSD, the kernel
environment provides an 1/0 kit for development of device drivers and
dvnamically loadable modules (which Mac Os X refers to as kernel extensions).
As shown m the figure, applications and common services can make use of
cither the Mach or BSI? facilitics directly.

application environments
and common services

F 3 A
L A
kernel BSD
environment
Mach

Figure 2.11 The Mac OS X structure.
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The layered approach described in Section 2.7.2 is taken to its logical conclusion
in the concept of a virtual machine. The fundamental idea behind a virtual
machine is to abstract the hardware of a single computer (the CPU, memaory,
disk drives, network interface cards, and se forth) into several different
execution environments, thereby creating the illusion that each separate
execution environment is running its own private computer,

By using CPU scheduling (Chapter 5) and virtual-memory techniques
(Chapter 9), an operating system can create the illusion that a process has
its own processor with its own (virtual) memory. Normally, a process has
additional features, such as system calls and a file system, that are not provided
by the bare hardware. The virtual-machine approach does not provide any such
additional functionality but rather provides an interface that is identical to the
underlying bare hardware. Each process is provided with a (virtual) copy of
the underlying computer (Figure 2.12).

There arve several reasons for creating a virtual machine, all of which
are fundamentally related to being able to share the same hardware yet run
several different execution environmenis (that is, different operating svstems)
concurrently. We will explore the advantages of virtual machines in more detail
in Section 2.8.2. Threughout much of this section, we discuss the VM operating
systern for [BM systems, as it provides a useful working example; furthermore
1BM pioneered the work in this area.

A major difficulty with the virtual-machine approach involves disk sys-
tems. Suppose that the physical machine has three disk drives but wants to
support seven virtual machines. Clearly, it cannot allocate a disk drive to
each virtual machine, because the virtual-machine software itself will need
substantial disk space to provide virtual memory and spooling. The solution

processes
processes
processes processes
| s
o — pr;?;?fr:g;mg kernel kernel kernel
k:el VM1 VM2 VM3
y virlual-machine
impiementation |
hardware hardware
@) (b)

Figure 2.12 System models. (a) Nonvirtual machine. {b) Virtual machine.
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is to provide virtual disks—termed minifisks in 18M's VM operating system
—that are identical in all respects except size. The system implements cach
minidisk by allocating as many tracks on the physical disks as the minidisk
needs. Obviously, the sum of the sizes of all minidisks must be smaller than
the size of the physical disk space available.

Users thus are given their own virtual machines. They can then run any of
the operating systems or software packages that are available on the underlying
machine. For the 1BM VM system, a user normally runs CMS-—a single-user
interactive operating system. The virtual-machine software is concerned with
multiprogramming multiple virtual machines onto a physical machine, but it
docs not need to consider any user-support software. This arrangement may
provide a nseful way to divide the problem of designing a multiuser interactive
system into two smaller pieces.

2.8.1 Implementation

Although the virtual-machine concept is useful, it is difficult to implement.
Much work is required to provide an exact duplicate of the underlying machine.
Remember that the underlying machine has two modes: user mode and kernel
mode. The virtual-machine software can run in kernel mode, since it is the
operating system. The virtual machine itself can execute in only user mode.
just as the physical machine has two modes, however, so must the virtual
machine. Consequently, we must have a virtual user mode and a virtual kernel
made, both of which run in a physical vser mode. Those actions that cause a
transfer from user mode to kernel mode on a real machine (such as a system
call or an attempt to execute a privileged instruction) must also cause a transfer
from virtual user mode to virtual kernel mode on a virtual machine.

Such a transfer can be accomplished as follows. When a system cail, for
example, is made by a program running on a virtual machine in virtual user
mode, it will cause a transfer to the virtual-machine monitor in the real machine.
When the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the effect of
the system call. It can then restart the virtual machine, noting that it is now in
virtual kernel mode.

The major difference, of course, is time. Whereas the real 1/0 might have
taken 100 milliseconds, the virtual 170 might take less time {because it is
spooled) or more time (because it is interpreted}. In addition, the CPU is
being multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. vM
works for IBM machines because normal instructions for the virtual machines
can execute directly on the hardware. Only the privilzged instructions (needed
mainly for 1/0) must be simulated and hence execute more slowly.

2.8.2 Benefits

The virtual-machine concept has several advantages. Notice that, in this
environment, there is complete protection of the various system resources.
Each virtual machine is completely isolated from all other virtual machines,
so there are no protection problems. At the same time, however, there is no
direct sharing of resources. Two approaches to provide sharing have been
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implemented. First, it is possible to share a minidisk and thus to share files,
This scheme is modeled after a physical shared disk but is implemented by
software. Second, it is possible to define a network of virtual machines, each
of which can send information over the virtual communications network.
Again, the network is modeled after physical communication networks but

is ignplemented in software.
Z‘S:uch a virtual-machine system is a pertect vehicle for operating-systems
research and develepment) Normally, changing an operating system is a
difficult task. Operating systems are large and complex programs, and it is
difficult to be sure that a change in one part will not cause obscure bugs
in some other part. The power of the operating system makes changing it
particularly dangerous. Because the operating system executes in kernel mode,
a wrong change in a pointer could cause an error that would destroy the entire
file systemn. Thus, it is necessary to test all changes to the operating system
carefully.

The uperating svstem, however, runs on and contrels the entire machine.
Therefore, the current system must be stopped and taken out of use while
changes are made and tested. This period is commenly called systcm-
development time. Since it makes the system unavailable to users, system-
development time is often scheduled late at night or on weekends, when system
load js low. -

A virtual-machine system can eliminate much of this problem. $ystem
progranuners are given their own virtual machine, and system development is
done on the virtual machine instead of on a physical machine. Normal system
operation seldom needs to be disrupted for system development.

2.8.3 Examples

Despite the advantages of virtual machines, they received litile attention
for a number of vears after they were first developed. Today, however,
virtual machines are coming back into fashion as a means of solving system
compatibility problems. In this section, we explore two popular contemporary
virtual machines: VMware and the Java virtual machine. As we will see,
these virtual machines typically run on top of an operating system of any of
the design types discussed earlier. Thus, operating system design methods —
simple layers, microkernel, modules, and virtual machines—are not mutuailv
exclusive.

2831 VMware

VMware is a popular commercial application that abstracts Intef 30X86
hardware into isolated virtual machines. VMware runs as an application on a
host operating system such as Windows or Linux and allows this host svstem
to concurrently run several different guest operating systems as independent
virtual machines.

Consider the following scenario: A developer has designed an application
and would like to test it on Linux, FreeBSD, Windows NT, and Windows XP. One
option is for her to obtain four different computers, each running a copy of one
of these operating systems. Another alternative is for her first to install Linux
on a computer systern and test the application, then to install FreeBSD and test
the application. and so torth. This option allows her to use the same phyvsical
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Figure 2.13 VMware architecture.

computer but is time-consuming, since she must install a new operating system
for each test. Such iesting could be accomplished concurrently on the same
pnysical computer using VMware. In this case, the programmer could test the
application on a host operating system and on three guest operating systems
with each system running as a separate virtual machine.

The architecture of such a system is shown in Figure 2.13. In this scenario,
Linux is running as the host operating system; FreeBSD, Windows N7, and
Windows X are running as guest operating systems. The virtualization layer
is the heart of VMware, as it abstracts the physical hardware into isolated
virtual machines running as guest operating systems, Each virtual machine
has its own virtual CPU, memory, disk drives, network inteefaces, and so forth.

2.8.3.2 The Java Virtual Machine

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995, In addition to a language specification and a large API
library, Java also provides a specitication for a Java virtual machine—or JVM.

Java objects are specified with the class construct; a Java program

consists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output (.class) file that will run on any
implementation of the [vM.

The [VMis a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 2.14. The class loader ioads the compiled .class
files from both the Java program and the Java AP for execution by the Java
interpreter. After a class is loaded, the verifier checks that the .class file is
valid Java bytecode and does not overflow or underflow the stack. It also
ensures that the bytecode does not perform pointer arithmetic, which could
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Figure 2.14 The Java virtual machine,

provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The JVM also automatically manages memory by performing
garbage collection —the practice of reclaiming memory from objects no longer
in use and retuming it to the system. Much rescarch focuses on garbage
collection afgorithms for increasing the performance of [ava programs in the
virtual machine.

The JvM may be implemented in software on top of a host operating
system, such as Windows, Linux, or Mac 0§ X, or as part of a web browser,
Alternatively, the fVM may be implemented in hardware on a chip specifically
designed to run Java programs. If the |VM is implemented in software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use a just-in-time (JIT) compiler. Here, the first time a
Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions and the bytecode operations need not be interpreted all over again.
A technique that is potentially even faster is to run the JvM in hardware on a
special Java chip that executes the Java bytecode operations as native code, thus
bypassing the need for either a software interpreter or a just-in-time compiler.

It is possible to design, code, and implement an operating system specifically
for one machine at one site. More commonly, however, operating systems
are designed to run on any of a class of machines at a variety of sites with
a variety of peripheral configurations. The system must then be configured
or generated for each specific computer site, a process sometimes known as
system generation (SYSGEN).

The operating system is normally distributed on disk or CD-ROM. To
generate a system, we use a special program. The SYSGEN program reads from
a given file, or asks the operator of the system for information concerning the
specific configuration of the hardware system, or probes the hardware directly
to determine what components are there. The following kinds of information
muist be determined.
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What CPU is to be used? What options (extended instruction sets, floating-
point arithmetic, and so on) are installed? For multiple CP'U systems, each
Cr'U must be described.

How much memory is available? Some systems will determine this vatue
themselves by referencing memory location after memory iocation until an
“illegal address” fault is generated. This procedure defines the final legal
address and hence the amount of available memory.

What devices are available? The system will need to know how to address
cach device (the device number), the device interrupt number, the device’s
type and model, and any special device characteristics.

What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers ot
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
S0 On.

Once this information is determined, it can be used in several ways. Atone
extreme, asystem administrator can use it to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data
declarations, initializations, and constants, along with conditional compilation,
produce an output object version of the operating system that is tailored to the
system described.

At a slightly less tailored level, the system description can cause the
creation of tables and the selection of modules from a precompiled library.
These modules are linked together to form the generated operating system.
Selection allows the library to contain the device drivers for all supported [/0
devices, but only those needed are linked into the operating system. Because
the system is not recompiled, system gencration is faster, but the resulting
systemn may be overly general.

At the other extreme, it is possible to construct a system that is completely
table driven. All the code 1s always part of the system, and selection occurs at
execution time, rather than at compile or link time. System generation involves
simply creating the appropriate tables to describe the system.

The major differences among these approaches are the size and generality
of the generated system and the ease of maodification as the hardware
configtration changes. Consider the cost of modifving the system to support a
newly acquired graphics terminal or another disk drive. Balanced against that
cost, of course, is the frequency (or infrequency) of such changes.

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The procedure of starting a computer by loading the kernel
is known as hooting the system. On most computer systems, a small piece of
code known as the bootstrap program or boatstrap loader locates the kernel,
loads it into main memory, and starts its execution. Some computer systems,
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such as Cs, use A two-step process in which a simple bootstrap loader fetches
a more complex boot program from disk, which in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is powered up
or rebooted —the instruction register is loaded with a predefined memory
location, and execution starts there. At that location is the imtial bootstrap
program. This program is in the form of read-only memonry (ROM), because
the RAM is in an unknown state at system startup. ROM is convesnicnt because
it needs no initialization and cannot be infected by a computer virus.

The bnotstrap program can pertorm a variety of tasks. Usually, one task
15 to run diagnostics to determine the state of the machine. If the dldbn[\ht!tb
pass, the program can continue with the booting steps. It can also initialize all
aspects of the system, from CPU registers to device controllers and the contents
of main memory. Souner or later, it starts the operating system.

Some HVHtE‘Il’lb—HUCh as cellular phones, PI2As, and game consoles —store
the entire operaiing system in ROM. Storing the operating system in ROM is
suitable for small operating systems, simple supporting hardware, and rugged
operation. A problem with this approach is that changing the bootstrap code
requites changing the ROM hardware chips. Some systems resobve this problem
b using erasable progranimable read-only memory (EPROM). which is read-
only except when explicitly given a command to become writable, All forms
of ROM are also known as firmware, since their characteristics fall somewhere
between those of hardware and those of software. A probiem with firmware
in general is that executing code there is slower than executing code in RAM.
Some svatems store the (‘porating system in firmware and copy it to RAN for
fast execution. A final issue with firmware is that it is relatively expensive, so
usually enly small amounts are available,

For large operating systems (including most general-purpose operating
systems like Windows, Mac 05 X, and UNIX) or for systems Hhat change
frequently, the bootstrap loader is stored in firmware, and the vperating system
is on disk. In this case, the bootstrap runs diagnostics and has a blt of code
that can read a sirgle block at a fixed location (say block zero) from disk into
memory and execute the code from that boet block. The program stared i the
boot block may be sophisticated enough te load the entire operating svstem
into memory and begin its execution. More typically, it is simple code (as it fits
in a single disk block) and only knows the address on disk and length of the
remainder of the bootstrap program. All of the disk-bound bootstrap, and the
operating system itself, can be easily changed by writing new versions to disk.
A disk that has a boot partition (more on that in section 12.5.1) is called = boot
disk or system disk.

Now that the full bootstrap program has been loaded, it can traverse the
file system to find the operating system kernel, load it into memory, and start
its execution. It is on]y at this pomt that the system is said to be running.

Operating systems provide a number of services. At the lowest level, system
calls allow a running program to make requests from the operating ~ystem
directly. At a higher level, the command interpreter or shell provides a
mechanism for a user to issue a request without writing a program. Comumands
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may come from files during batch-mode execution or directly from a terminal
when in an interactive or time-shared mode. System programs are provided to
satisfy many common user requests.

The types of requests vary according to level. The systern-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, are franslated into a sequence of system calls. System services
can be classified into several categories: program control, status requests, and
1/0 requests. Program errors can be considered implicit requests for service.

Once the systemn services are defined, the structure of the operating system
can be developed. Various iables are needed to record the information that
defines the state of the computer system and the status of the system’s jobs.

The design of a new operating system is a major task. It is important that
the goals of the system be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

Since an operating system is large, modularity is important. Designing a
system as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtual
machine.

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisions from implementation details (mecharisms). This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems-
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating
system for a particular machine configuration, we must perform system
generation,

For a computer system to begin running, the CPU must initialize and start
executing the bootstrap program in firmware. The bootstrap can exccute the
operating system directly if the operating system is also in the firmware, or
it can complete a sequence in which it loads progressively smarter programs
from firmware and disk until the operating system itself is loaded into memory
and executed.

2.1 The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.

2.2 List five services provided by an operating system that are designed to
make it more convenient for users to use the computer system. In what
cases it would be impossible for user-level programs to provide these
services? Explain.
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2.3

24

2.5

2.6

2.7

28

2.9

2.10

21

2.12

Describe how vou could obtain a statistical profite of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

What are the five major activities of an operating system with reyrard to
file management?

What is the purpose of the command interpreter? Why is it usually
separate from the kernel? Would it be possible for the user to develop
anew command interpreter using the system-call interface provided by
the operating system?

What are the bivo models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

Why does Java provide the ability to call from a Java program native
methods that are written in, say, C or C++? Provide an example of a
situation in which a native method is useful.

Itis somnetimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

In what ways is the modular kernel approach similar to the layered
approach? n what ways does it differ from the layered approach?

What s the main advantage for an operating-system designer of using
a virtual-machine architecture? What s the main advantage for a user?

What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?

The experimental Synthesis operating system has an assembler incor-
porated in tie kernel. To optimize system-call performance, the kernet
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Svnthesis approach to kernel design and system-performance
optimization.

In this project, vou will study the system call interface provided by the Linux
operating system and how user programs communicate with the operating
system kerncl via this interface. Your task is to incorporate a new system call
into the Linux kernel, thereby expanding the functionality of the operating
system.
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A user-mode procedure call is performed by passing arguments to the called
procedure either on the stack or throu gh registers, saving the current state and
the value of the program counter, and jumping to the beginning of the code
corresponding to the called procedure. The process continues to have the same
privileges as before.

System calls appear as procedure calls to user programs, but result in
a change in execution context and privileges. In Linux on the Intel 386
architecture, a system call is accomplished by storing the system call number
into the EAX register, storing arguments to the system call in other hardware
registers, and executing a trap instruction (which is the INT 0x80 assembly
instruction). After the trap is executed, the system call number is used to index
into a table of code pointers to obtain the starting address for the handler
code implementing the svstem call. The process then jumps to this address
and the privileges of the process are switched from user to kernel mode. With
the expanded privileges, the process can now execute kernel code that might
include privileged instructions that cannot be executed in user mode. The
kernel cade can then perform the requested services such as interacting with
170 devices, perform process management and other such activities that cannot
be performed in user mode.

The system call numbers for receat versions of the Linux kernet
are listed in Jusr/sr</linux~2.x/include/asm-i386/unistd.b. {For
instance, _ NR clese, which corresponds to the system call close()
that is invoked tor closing a file descriptor, is defined as value 6.) The
fist of pointers to system call handlers is typically stored in the file
fusr/erc/linun-2.x/arch/i386/kernel/entry.S under the heading
ENTRY (sy3.call table). Notce that sys close is stored at entry numbered
& the table to be consistent with the system call pumber Jdefined inunistd. h
file. (The keyword . Tong denotes that the entry will occupy the same number
of bytes as a data value of tvpe Tong.)

Building a New Kernel

Before adding a system call to the kernel, vou must familiarize yourself with
the task of building the binary for a kernel from its source code and booting
the machine with the newly built kernel. This activity comprises the following
tasks, some of which are dependent on the particular installation of the Linux
operating systen.

Obtain the kernel source code for the Linux distribution. If the source code
package has been previously instatled on your machine, the corresponding
files might be available under /usr/src/linux or fusr/sre/linux-2.x
{where the suffix corresponds to the kernel version number). If the package
has not been instailed earlier, it can be downloaded from the provider of
your Linux distribution or from http://wuw.kernel , org.
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Learn how to configure, compile, and install the kernel binary. This
will vary between the different kernel distributions, but some typical
commands for bmldmb the kernel (after entering the directory where the
kernel source code is stored) include:

5 make xconfig
> make dep
© make bzImage

Add a new entry to the set of bootable kernels supported by the svsten.
The Linux operating system typically uses utilities such as 1ilo and grub
to maintain a list of bootable kernels, from which the user can choose
during machine boot-up. If your system supports 1ilo, add an eniry to
lilo.conf, such as:

image=/boot /bzImage . mykernel
label=mykernel
root=/dev/hdas

read-only

where /boot/bzImage.mykernel is the kernel image and mykernel is
the label associated with the new kernel allowing you to choose it during
bootup process. By performing this step, you have the option of either
booting a new kernel or booting the unmodified kernel if the newly built
kernel does not function properly.

Extending Kernel Source

You can now experiment with adding a new file to the set of source files
used for compiling the kernel. Typically, the source code is stored in the
fusr/src/linux-2. x/kernel directory, although that location may differ in
your Linux distribution. There are two options for adding the system call.
The first is to add the system call to an existing source file in this directory.
A second option is to create a new file in the source directory and modify
/usr/src/linux-2.x/kernel/Makefile to include the newly created file
in the compilation process. The advantage of the first approach is that by
modifying an existing file that is aiready part of the compilation process, the
Makefile does not require modification.

Adding a System Call to the Kernel

Now that you are tamiliar with the various background tasks corresponding
to building and booting Linux kernels, you can begin the process of adding a
new system call to the Linux kernel. In this project, the system call will have
limited functionality; it will simaply transition from user mode to kernel mode,
print a message that is logged with the kernel messages, and transition back to
user mode. We will call this the liellozvorld system call. While it has only limited
functicnality, it illusirates the system cali mechanism and sheds light on the
interaction between user programs and the kernel.
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Create a new file called helloworld. c to define vour system call. Include
the header files 1inux/linkage.h and linux/kernel.h. Add the follow-
ing code to this file:

#include <linux/linkage.h>

#include <linux/kernel.hs

asmlinkage int sys.helloworld()
printk (KERN.EMERG "hello world!");

return 1;

}

This creates a system call with the name sys_helloworld (). If you choose
to add this systemn call to an existing file in the source directory, all that is
necessary is to add the sys_helloworld () function to the file you choose.
asmlinkage is a remnant from the days when Linux used both C++
and C code and is used to indicate that the code is written in C.
The printk() function is used to print messages to a kernel log file
and therctore may only be called from the kernel. The kernel mes-
sages specified in the parameter to printk() are logged in the file
/var/log/kernel/warnings. The function prototype for the printk()
call is defined in /usr/include/linux/kernel .h.

Define a new system call number for _NR helloworld in
/usr/src/linux-2.%/include/asm~i386/unistd.h. A user program
can use this number 0o identify the newly added system call. Also be sure
to increment the value for _ NR_syscalls, which is also stored in the same
file. This constant tracks the number of svstem calls currently defined in
the kernel,

Add an entry .long sys_helloworld te the sys_call table defined
in /usr/src/linux~2.x/arch/i386/kernel/entry. 5 file. As discussed
eariier, the svstem call number is used to index into this table to find the
position of the handler code for the invoked system call.

Add your file hellowerld. ¢ to the Makefile (if you created a new file for
your system call.) Save a copy of your old kernel binary image (in case
there are problems with your newly created kernel.) You can now build
the new kernel, rename it to distinguish it from the unmodified kernel,
and add an entry to the loader configuration files (such as 1ilo.conf}).
After u:mp!etmg these steps, you may now boot either the old kernel or
the new kernel that contains vour system call inside it.

Using the System Call From a User Program

When vou boot with the new kernel it will support the newly defined system
call; it is v ow simply a matter of invoking this system call from a user program.
Ordinarity, the standard C library supports an interface for system calls defined
for the Linux operating system. "As your new system call is not linked into the
standard C library, invoking vour system call will require manual intervention.
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As noted eartier, a system call is invoked by storing the appropriate value
into a hardware register and performing a trap instruction. Untortunately, these
are low-level operations that cannot be performed using C language statements
and instead require assembly instructions. Fortunately, Linux provides macros
for instantiating wrapper functions that contain the appropriate assembly
instructions. For instance, the following C program uses the syscall0()
macro to invoke the newly defined system call:

finclude <linux/errno.hs
#include <sys/syscall. hs

#include <linux/unistd.h>

-syscallll{int, hellewocrld);

main()
{

helloworldi) ;
}

The _syscali0 macro takes two arguments. The first specifies the type of
the value returned by the system call; the second argument is the name of
the system call. The name is used to identify the system call number that
is stored in the hardware register before the trap instruction is executed.
If your system call requires arguments, then a different macro (such as
-syscalll, where the suffix indicates the number of arguments) could be
used to instantiate the assembly code required for performing the system
call.

Compile and execute the program with the newly built kernel.
There should be a message “hello world!™ in the kernel log file
/var/log/kernel/warnings to indicate that the system call has
executed.

As a next step, consider expanding the functionality of your system call.
How would you pass an integer value or a character string to the system call
and have it be printed into the kernel log file? What are the implications for
passing pointers to data stored in the user program’s address space as opposed
to simply passing an integer value from the user program to the kernel using
hardware registers?

Dijkstra [1968] advocated the layered approach to operating-system design.
Brinch-Hansen [1970] was an early proponent of constructing an operating
system as a kernel (or nucleus) on which more complete systems can be built.

System instrumentation and dynamic tracing are described in Tamches
and Miller [1999]. DTrace is discussed in Cantrill et al. [2004]. Cheung and
Loong [1995] explored issues of operating-system structure from microkernel

1o extensible systems.
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MS-TX0S, Version 3.1, is desceribed in Microsoft [1986]. Windows NT and
Windows 2000 are described by Solomen [1998] and Solemen and Russi-
novich [2000]. BSD UNIx is described in McKusick et al. [1996]. Bovet and
Cesati [2002] cover the Linux kernel in detail. Several UNIX systems—includ-
ing Mach-—are treated in detail in Vahalia [1996]. Mac OS X is presented at
http:/ /www.apple.com/macosx. The experimental Synthesis operating svs-
tem 3s discussed by Massalin and Pu [1989]. Solaris is fully described in Mauro
and McDougall [2001].

The first operating system to provide a virtual machine was the C/67 on
an IBM 360/67. The commercially available IBM VM /370 operating system was
derived from CP/67. Details regarding Mach, a microkernel-based operating
system, can be found in Young et al. [1987]. Kaashoek et al. [1997] present details
regarding exokernel operating systems, where the architecture separates
management issues from protection, thereby giving untrusted software the
ability to exercise control over hardware and software resources.

The specifications for the Java language and the Java virtual machine are
presented by Gosling et al. [1996] and by Lindholm and Yellin [1999], respec-
tively. The internal workings of the Java virtual machine are fully described by
Venners [1998]. Golm et al. [2002] highlight the X operating system; Back
et al. [2000] cover several issues in the design of Java operating systems.
More information on Java is available on the Web at hitp:/ / www.javasott.com.
Details about the implementation of VMware can be found in Sugerman et al.
(2001}, :






